Novel therapies for multidrug-resistant bacteria

October 23, 2017

Scientists at the University of Surrey in collaboration with research partners at the University of Sheffield and University of Würzburg, Germany, have developed novel antimicrobials, which could be used to treat infections, caused by multidrug-resistant bacteria.

During this innovative study published in PLOS One, researchers found that novel classes of compounds, such as metal-complexes, can be used as alternatives to or to supplement traditional antibiotics, which have become ineffective due to antimicrobial resistance.

Antimicrobial resistance is the ability of a microorganism, such as bacterium or virus, to resist the effects of an antimicrobial, which was originally effective for treatment of infections caused by it. Anti-microbial resistance is a growing threat, with 700,000 people around the world each year dying due to drug-resistant infections including tuberculosis, HIV and malaria. A review of anti-microbial resistance has predicted that if no action is taken, drug-resistant infections will kill 10 million people a year by 2050. England's Chief Medical officer, Dame Sally Davies has said that such resistance to antibiotics could spell the end of modern medicine.

In this original piece of research, it was discovered that the antibacterial activity of the licensed antibiotic colistin, was significantly enhanced when used in combination with a new manganese tricarbonyl complex. The combination was far more effective in killing multidrug-resistant bacteria than colistin alone. The activity was also confirmed in an insect model of infection, where survival rates of 87% were observed in those treated with the combination, compared to 50% survival in those given colistin alone. This work highlights the activity of the first of many antimicrobials under development, with sister antimicrobials even more active than the first.

Lead author Dr Jonathan Betts, from the University of Surrey, said: "Antimicrobial resistance is a constant threat, as bacteria continue to evolve at a rapid pace. This makes it very difficult for us to treat bacterial diseases, as many antibiotics are becoming redundant, limiting the treatments available to people and animals.

"However, by combining these drugs, in our case with a novel metal-complex, we could extend their lifespan and effectiveness, helping us tackle this growing threat. Antibiotics which are no longer effective could potentially be reactivated when used with this compound, providing medical professionals greater options in treating diseases."

Professor Roberto La Ragione, Head of the Department of Pathology and Infectious Diseases in the School of Veterinary Medicine, at the University of Surrey, said: "The Chief Medical Officer Dame Sally Davies was correct in warning of a post-antibiotic apocalypse, as the danger posed by antimicrobial resistance is unprecedented.

"We are running out of antibiotics, but this innovative approach could enhance the effectiveness of antibiotics and for a time, at least, help us tackle this growing problem."
-end-
This study received funding from BBSRC.

University of Surrey

Related Antibiotics Articles from Brightsurf:

Insights in the search for new antibiotics
A collaborative research team from the University of Oklahoma, the Memorial Sloan Kettering Cancer Center and Merck & Co. published an opinion article in the journal, Nature Chemical Biology, that addresses the gap in the discovery of new antibiotics.

New tricks for old antibiotics
The study published in the journal Immunity reveals that tetracyclines (broad spectre antibiotics), by partially inhibiting cell mitochondria activity, induce a compensatory response on the organism that decreases tissue damage caused during infection.

Benefits, risks seen with antibiotics-first for appendicitis
Antibiotics are a good choice for some patients with appendicitis but not all, according to study results published today in the New England Journal of Medicine.

How antibiotics interact
Understanding bottleneck effects in the translation of bacterial proteins can lead to a more effective combination of antibiotics / study in 'Nature Communications'

Are antivitamins the new antibiotics?
Antibiotics are among the most important discoveries of modern medicine and have saved millions of lives since the discovery of penicillin almost 100 years ago.

Hygiene reduces the need for antibiotics by up to 30%
A new paper published in the American Journal of Infection Control (AJIC), finds improved everyday hygiene practices, such as hand-washing, reduces the risk of common infections by up to 50%, reducing the need for antibiotics, by up to 30%.

Antibiotics: City dwellers and children take the most
City dwellers take more antibiotics than people in rural areas; children and the elderly use them more often than middle-aged people; the use of antibiotics decreases as education increases, but only in rich countries: These are three of the more striking trends identified by researchers of the NRW Forschungskolleg ''One Health and Urban Transformation'' at the University of Bonn.

Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.

Antibiotics from the sea
The team led by Prof. Christian Jogler of Friedrich Schiller University, Jena, has succeeded in cultivating several dozen marine bacteria in the laboratory -- bacteria that had previously been paid little attention.

Antibiotics not necessary for most toothaches, according to new ADA guideline
The American Dental Association (ADA) announced today a new guideline indicating that in most cases, antibiotics are not recommended for toothaches.

Read More: Antibiotics News and Antibiotics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.