Climate change and African trypanosomiasis vector populations in Zimbabwe's Zambezi Valley

October 23, 2018

LSTM's Dr Jennifer Lord is first author on a paper looking at the impact of climate change on the vectors of sleeping sickness in Africa.

The study, published in PLOS Medicine (link is external), is based on 27 years of data from Mana Pools National Park in Zimbabwe. The mathematical model developed by Dr Lord and co-authors suggests that temperature increases over the last three decades have already caused major declines in local populations of tsetse flies, thereby providing a first step in linking temperature to the risk of sleeping sickness in Africa.

Dr Lord said: "If the effect at Mana Pools extends across the whole of the Zambezi Valley, then the transmission of trypanosomes is likely to be have been greatly reduced in this warm low-lying region." While that is good news for the disease situation in Zambezi Valley, "rising temperatures may have made some higher, cooler parts of Zimbabwe, more suitable for tsetse flies."

Tsetse are blood-feeding insects that transmit trypanosome pathogens which cause the potentially fatal sleeping sickness in humans across sub-Saharan Africa. The parasites also cause a similar disease in livestock, with recent estimates indicating about one million cattle deaths per year.

Researchers from the Liverpool School of Tropical Medicine, the South African Centre of Excellence for Epidemiological Modelling and Analysis (link is external) (SACEMA) at Stellenbosch University, and the Natural Resources Institute at the University of Greenwich (link is external), developed a mathematical model used in the study. The results, which were only made possible because of prolonged laboratory and field measures of fly densities, provided evidence that locations such as the Zambezi Valley in Zimbabwe may soon be too hot to support tsetse populations.

Since the 1990s, researchers at Rekomitjie Research Station, in the park, have been catching tsetse flies from cattle and found that the catches declined from more than 50 flies per animal per catching session in 1990, to less than 1 fly per 10 catching sessions in 2017. Since 1975, mean daily temperatures have risen by nearly 1°C and by around 2°C in the hottest month of November.

Professor John Hargrove, Senior Research Fellow at SACEMA, says the effect of recent and future climate change on the distribution of tsetse flies and other vectors, particularly mosquitoes, is poorly understood: "We don't know, for example, whether the resurgence of malaria in the East African highlands in the 1990s was caused by rising temperatures or by increasing levels of drug resistance and decreasing control efforts.

Work carried out on tsetse at Rekomitjie has produced long-term datasets for both vector abundance and climate change. The station is located inside a protected area and has been free of agricultural activities since 1958. As not much has changed other than climate, the data from the site provided the ideal opportunity to develop a temperature-driven model for tsetse population dynamics.

The authors highlight that other areas traditionally too cold to support tsetse in large numbers are now potentially warm enough to support larger populations. If this is the case new control measures will need to be developed to protect livestock and humans previously not thought to be at risk.
-end-


Liverpool School of Tropical Medicine

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.