How to reverse memory loss in old mice

October 23, 2018

NEW YORK -- A Columbia study in mice has revealed new details of how a naturally occurring bone hormone reverses memory loss in the aging brain. These findings about the hormone, called osteocalcin, stand to spur further investigations into the molecular machinery that underlies memory -- and how that machinery can be manipulated to improve it. The research also lends new insight into how lifestyle changes that affect the body, such as exercise, could positively affect the brain.

These findings were reported today by a team of Columbia researchers, led by Nobel laureate Eric R. Kandel, MD, in Cell Reports.

"Nearly everyone will experience age-related memory loss in their lifetimes, so it is incredibly important to understand its causes and identify ways to mitigate it," said Dr. Kandel, who is University Professor and Kavli Professor of Brain Science, as well as codirector of Columbia's Mortimer B. Zuckerman Mind Brain Behavior Institute. "With today's study, we are not only building a detailed understanding of how age-related memory loss originates in the brain, we've shown how osteocalcin interacts with key proteins in the brain to boost memory."

For many years, memory loss was treated as a singular disorder. Then scientists began to realize that not all forms of memory loss are created equal.

Alzheimer's disease changes the brain in different ways than does age-related memory loss, a milder, though far more common, memory disorder. While both Alzheimer's and age-related memory loss affect the hippocampus, the brain's headquarters for learning and memory, each targets a completely differently area within that region.

"Alzheimer's disease begins in a part of the brain called the entorhinal cortex, which lies at the foot of the hippocampus," said Dr. Kandel, who is also a senior investigator at the Howard Hughes Medical Institute. "Age-related memory loss, by contrast, begins within the hippocampus itself, in a region called the dentate gyrus."

In 2013, Dr. Kandel and his team discovered another difference between the two disorders: A deficiency in the RbAp48 protein is a significant contributor to age-related memory loss but not Alzheimer's. Research has shown that RbAp48 levels decline with age, both in mice and in people. This decline can be counteracted, the researchers found; when they artificially increased RbAp48 in the dentate gyrus of aging mice, the animals' memories improved.

In 2017, the researchers found another way to improve the memories of mice. Working with Gerard Karsenty, MD, PhD, the Paul A. Marks Professor and Chair of Genetics and Development at Columbia University Irving Medical Center, the scientists found that infusions of osteocalcin, a hormone normally released by bone cells, had a positive effect on memory.

Today's study connects osteocalcin and RbAp48, suggesting that the key driver of the memory improvements lay in the interplay between these molecules. In a series of molecular and behavioral experiments, the team found that RbAp48 controls the expression levels of BDNF and GPR158, two proteins regulated from osteocalcin. This chain of events appears to be critical; if RbAp48 function is inhibited, osteocalcin infusions have no effect on the animals' memory. Osteocalcin needs RbAp48 to kick start the process.

This complex sequence of molecular signals is entirely different from those associated with Alzheimer's disease. "This is the clearest evidence yet that age-related memory loss and Alzheimer's are distinct diseases," said Dr. Kandel.

These findings also provide further evidence in favor of what may be the best way to stave off, or even treat, age-related memory loss in people: exercise. Studies in mice by Dr. Karsenty's team have shown that moderate exercise, such as walking, triggers the release of osteocalcin in the body. Dr. Kandel proposes that, over time, osteocalcin may make its way to the brain, where it encounters RbAp48. Eventually, this could have a long-term, positive effect on memory and the brain.

"This notion points to another line of inquiry that we're eager to explore, which is how does the aging body act on the aging brain, and how can it be reversed?" said Dr. Kandel, "Our latest findings are almost certainly not the whole story. They are just the beginning."
-end-
This paper is titled "RbAp48 protein is a critical component of GPR158/OCN signaling and ameliorates age-related memory loss." Additional contributors include first author Stylianos Kosmidis, PhD, Alexandros Polyzo, Lucas Harvey, Mary Youssef, Christine A. Denny, PhD, and Alex Dranovsky.

This research was supported by the Howard Hughes Medical Institute.

The authors report no financial or other conflicts of interest.

Columbia University's Mortimer B. Zuckerman Mind Brain Behavior Institute brings together an extraordinary group of world-class scientists and scholars to pursue the most urgent and exciting challenge of our time: understanding the brain and mind. A deeper understanding of the brain promises to transform human health and society. From effective treatments for disorders like Alzheimer's, Parkinson's, depression and autism to advances in fields as fundamental as computer science, economics, law, the arts and social policy, the potential for humanity is staggering. To learn more, visit: zuckermaninstitute.columbia.edu.

The Zuckerman Institute at Columbia University

Related Memory Articles from Brightsurf:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.

Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.

VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.

The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.

How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.

A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.

Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.

Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.

Read More: Memory News and Memory Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.