Optimizing winglets for minimum drag, more efficient flight

October 23, 2018

Although, winglets have been around since the mid-1970s, there is still a wide variety of shapes, sizes, and angles.

If you've ever taken a photo out the window of a commercial airplane, you most likely have a great shot of a winglet--that part of the wing at the tip that angles upward. That little change in the wingtip's shape does a lot. It reduces drag, which can translate to higher speed or to allow a pilot to throttle back and save fuel. It also helps to reduce wingtip vortices that can be problematic for airplanes flying in their wake.

Although, winglets have been around since the mid-1970s, there is still a wide variety of shapes, sizes, and angles. Analyzing winglets to find the optimal characteristics to result in the lowest net drag for an aircraft was the goal of University of Illinois researchers Phillip Ansell, Kai James, and graduate student Prateek Ranjan.

"Many academic studies on non-planar wing designs idealize winglets installed with a sharp 90-degree turn at the tips, though there are a lot of things potentially wrong with having these sharp junctures. Because individual aircraft have a unique set of constraints and requirements, it's difficult to make generalizations about how an aircraft should be designed," said Ansell, assistant professor in the Department of Aerospace Engineering in the College of Engineering at the University of Illinois. "However, when looking at non-planar wing systems, we distilled the problem to something very specific and canonical. We used a method of multi-fidelity optimization, beginning with very simple mathematical algorithms to better understand the design space within plus or minus 10 percent accuracy, then ran more advanced simulations to understand how the winglet influences the flow field and performance of the wing."

In their research, the team focused on a -- non-linear wing design, known as Hyper Elliptic Cambered Span (HECS) wing configurations, where the vertical projection of the wing can be described mathematically using the equation of a hyper-ellipse.

"We distilled the wing geometry down to something very simple," Ansell said. "We expressed the non-planarity of the wing--how curved it is, how high the wingtips are, etc.--using equations for a hyper-ellipse. Now we can easily change the values in the equation to find the best-performing wing while trading off sharper or smoother curvature as the tip is approached, as well as larger or smaller winglet heights."

Ansell said the algorithm began with a fixed lift, a fixed projected span, a fixed bending moment of the wing, and a fixed weight, to generate a wing that has the minimum drag--and ultimately be more efficient.

"While others have studied non-planar wings with blended winglet designs, most have only looked at the so-called 'inviscid' aspect of the wing drag, ignoring the complex sources of drag introduced by the viscosity of the air," Ansell said. "But that's only about half of the picture. In our formulation, we included these viscous drag sources because it has a substantial influence on the net efficiency of the wing. For example, it is easy to reduce the inviscid drag of the wing by adding very tall winglets at the tips with very sharp junctures. However, there is a distinct viscous drag penalty by doing so that reduces the effectiveness of such a design in practice."

"By performing a rigorous numerical optimization procedure, we were able to systematically explore the space of possible designs, and ultimately obtain designs that may seem unusual, and that we could never have predicted by relying on mere intuition," said Kai James, also an assistant professor in the Department of Aerospace Engineering.

Ansell said this integrated optimization framework will assist the current state of low-speed wing design but may also result in an improvement over the current conventional wing designs, operating in the subsonic flight regime.
-end-
Research for the paper, "Optimal Hyper Elliptic Cambered Span Configurations for Minimum Drag," was conducted by Prateek Ranjan, Phillip Ansell, and Kai James. It appears in the Journal of Aircraft.

University of Illinois College of Engineering

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.