Researchers connect the current mix of soil bacteria to climate conditions from 50 years ago

October 23, 2018

Washington, DC - October 23, 2018 - Scientists expect climate change influences the geographical distribution of microbes in the soil, but few studies have dug deeply into that relationship. A study published this week in mSystems suggests the connection can drag across decades. After sequencing soil samples from North American and the Tibetan plateau, and comparing those to historical climate records, an international team of researchers found that today's mix of soil bacteria is strongly influenced by the climate of 50 years ago.

"The past climate can better predict bacteria distribution than today's climate," says biostatistician Katherine Pollard, senior author of the study and Director of the Gladstone Institute of Data Science & Biotechnology in San Francisco, California.

Previous studies have shown a lag in plants and animals, in which organisms take years or decades to adjust to the changing climate, but this study is the first to show such a legacy effect for soil-based prokaryotes.

"We found these surprisingly long lags in how the distribution of microbes responds to shifts in the climate and the environment," says microbial ecologist and study leader Joshua Ladau, who worked on the study while at Gladstone.

Assuming the relationship between climate and soil microbes isn't changing, he says, it can be used to predict the future. "If climate change were to stop today, what would happen to the microbial distribution if it has time to catch up?" Ladau asks. "What have we already signed up for?"

To find out, he and his collaborators designed a statistical model built on the relationship they observed and plugged in the current climate conditions. The model predicts that as soil microbes adjust to today's climate over the next few decades, their diversity will increase over the next half-century across most of the Tibetan Plateau and northern North America.

Those findings, says Ladau, are connected to the idea of extinction debt, which has been widely studied in macroorganisms like plants and animals, but not in microbial systems. "Extinction debt" describes a scenario in which an organism lives in a place where it can no longer persist, but may take years or decades to disappear.

The study didn't begin with a focus on climate change. Microbiologist Haiyan Chu, senior author on the study, together with his graduate student Yu Shi, both at the Chinese Academy of Science's Institute of Soil Science in Nanjing, had sequenced 180 soil samples from 60 sites on the Tibetan plateau. They reached out to Pollard, at Gladstone, to work on a descriptive analysis of the microbes from different parts of the region. Ladau, then a postdoctoral researcher in Pollard's lab, became curious about the climate connection to those samples, and analyzed global maps of climate records dating back to 1950. The researchers obtained North American samples for comparison.

The researchers are taking a similar approach to other microbial communities, including marine microorganisms. Ladau says he'd also like to look at soil samples and climate records from further back in time to see

"How far back can we push these things?" he asks. "Decades? Hundreds of years? Millions?"
The American Society for Microbiology is the largest single life science society, composed of more than 30,000 scientists and health professionals. ASM's mission is to promote and advance the microbial sciences.

ASM advances the microbial sciences through conferences, publications, certifications and educational opportunities. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to diverse audiences.

American Society for Microbiology

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to