Nav: Home

Nitrogen study casts doubt on ability of plants to continue absorbing same amounts of CO2

October 23, 2018

A new study casts doubt as to whether plants will continue to absorb as much carbon dioxide in the future as they have in the past due to declining availability of nitrogen in certain parts of the world.

When it comes to the role plants play in keeping the heat-trapping greenhouse gas out of the atmosphere, "it may not be business as usual," said Lixin Wang, an associate professor in the Department of Earth Sciences at IUPUI.

Wang is a co-author of the paper "Isotopic evidence for oligotrophication of terrestrial ecosystems," which reports that finding. It was published Oct. 22 in the journal Nature Ecology and Evolution.

Grasslands View print quality image

In grasslands and forests, which are not directly fertilized, the availability of nitrogen to plants is declining. The study examines global availability of nitrogen, using a data set that is more than 30,000 data points larger than those previously used to determine nitrogen availability.

An essential nutrient for plants as well as for humans and animals, nitrogen is used widely in more urban, developed countries to fertilize crops. In fact, it has been used so widely that its use has raised serious environmental concerns.

That gave people the impression "that we are kind of nitrogen-saturated everywhere, that we have too much nitrogen," Wang said.

But the researchers found that perception is not true.

In natural systems such as grasslands and forests that are not directly fertilized, the researchers said, the availability of nitrogen to plants is declining. As availability declines, compared to the relative demand for the nutrient due to plants leafing out earlier and the longer growing seasons associated with climate warming, plants are suffering from nitrogen deficiency, Wang said.

"In such systems, which cover a large part of the world, demand for nitrogen is rising at a faster rate than the supply of nitrogen," Wang said.

With nitrogen deficiency, plants are unable to absorb the same quantity of carbon dioxide as they did previously.

"We know that plants reliably suck up carbon dioxide that we emit into the environment," Wang said. "But the problem right now is if plants are suffering more and more nitrogen limitations, it means they will be able to take up less and less of the extra carbon dioxide."

"Not only will plants be more stressed for nitrogen," said Joseph Craine, the paper's lead author, "but so will animals that eat plants. Less nitrogen in plants means less protein for herbivores, which could threaten the entire food chain."
-end-


Indiana University

Related Nitrogen Articles:

Fixing the role of nitrogen in coral bleaching
A unique investigation highlights how excess nitrogen can trigger coral bleaching in the absence of heat stress.
Universities release results on nitrogen footprints
Researchers have developed a large-scale method for calculating the nitrogen footprint of a university in the pursuit of reducing nitrogen pollution, which is linked to a cascade of negative impacts on the environment and human health, such as biodiversity loss, climate change, and smog.
A battery prototype powered by atmospheric nitrogen
As the most abundant gas in Earth's atmosphere, nitrogen has been an attractive option as a source of renewable energy.
Northern lakes respond differently to nitrogen deposition
Nitrogen deposition caused by human activities can lead to an increased phytoplankton production in boreal lakes.
Researchers discover greenhouse bypass for nitrogen
An international team discovers that production of a potent greenhouse gas can be bypassed as soil nitrogen breaks down into unreactive atmospheric N2.
Bacterial mechanism converts nitrogen to greenhouse gas
Cornell University researchers have discovered a biological mechanism that helps convert nitrogen-based fertilizer into nitrous oxide, an ozone-depleting greenhouse gas.
Going against the grain -- nitrogen turns out to be hypersociable!
Nitrogen is everywhere: even in the air there is four times as much of it as oxygen.
Soybean nitrogen breakthrough could help feed the world
Washington State University biologist Mechthild Tegeder has developed a way to dramatically increase the yield and quality of soybeans.
Trading farmland for nitrogen protection
Excess nitrogen from agricultural runoff can enter surface waters with devastating effects.
Measure of age in soil nitrogen could help precision agriculture
What's good for crops is not always good for the environment.

Related Nitrogen Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...