Nav: Home

Mapping millet genetics

October 23, 2019

October 23, 2019 - In the semi-arid tropics of Asia and Africa, conditions can be difficult for crops. Plants need to have short growing seasons, survive on poor soils and tolerate environmental stresses.

Enter, the millets.

Close to 97% of millets grown worldwide are produced in developing countries. Millets are a diverse group of cereal crops. Importantly, they generally have high nutritional content.

"However, millets have been largely overlooked by modern genetics research," says Matthew Johnson, a researcher at the University of Georgia. In a new study, Johnson, along with colleagues in India, have generated some of the first genetic resources for three different varieties of millets.

As genetic resources are created for less-studied crops, researchers can better leverage the genetic diversity within the crop family. This can lead to the development of new varieties of crops. "Our results will give researchers tools to develop better millet varieties for farmers," says Johnson.

Most farmers who grow millets are smallholders (farming less than 5 acres). Millets are crucial for their livelihood. That's because they can grow on marginal lands and need less water than most crops.

"Millets also grow much quicker than most other major crops," says Johnson. That's important because farmers can plant millets if weather or natural disasters cause initial plantings to fail. "So, with millets, the farmers can at least get some harvest," he says.

Johnson's team sequenced and analyzed DNA from three species of millets - kodo, little and proso. "These are three crops that have had relatively few resources developed for them," Johnson explains.

The plant source materials were obtained from the International Crops Research Institute for the Semi-Arid Tropics in India. The researchers' goal was to better understand the genetic diversity within and between each variety of millet. "Understanding this diversity is an important step in developing better varieties of the crop," says Johnson.

They uncovered tiny differences in the DNA sequences of the various plants. These genetic differences may ultimately be connected to characteristics, such as drought tolerance and growth rate.

"Genetics and field testing go hand-in-hand," says Johnson. Growing different kinds of millets can provide information about yield and flowering time, among other characteristics. "We need to pair these results with knowledge of the genetic relatedness of the millet plants," he says.

By collating field results and genetic data, researchers identify desired traits and develop improved varieties. "We can continue improving these varieties year after year," says Johnson.

An important part of breeding desirable varieties of a crop is understanding how existing ones are related to each other. "We were able to find evidence that the previous understanding of how the millet varieties are related to each other didn't always reflect their genetics," Johnson explains.

The existing classifications were done based on physical characteristics. But it turns out those may not be accurate reflections of close genetic relationships.

"Think of it as trying to classify genetic relationships among humans by hair color," he says. "Hair color is genetically controlled. Everyone with blonde hair, for example, has some genetic relatedness."

"But there is so much more than just hair color that determines who we are related to genetically," says Johnson. "Sometimes siblings can have a different hair color. However, they will be more closely related to each other than to a stranger who happens to have the same hair color."

Uncovering the underlying genetics, as in this study, can help plant breeders develop millet varieties with desired physical characteristics. "Millets are a great crop," says Johnson. "I believe they can diversify our diet and contribute to food sources and security as our climate continues to change."
Read more about this work in The Plant Genome. This research was supported in part by the International Crops Research Institute for the Semi-Arid Tropics and the University of Georgia.

American Society of Agronomy

Related Genetic Diversity Articles:

Asia-wide genome mapping project reveals insights into Asian ancestry and genetic diversity
After a global genetic comparison, a team of international scientists has discovered that Asia has at least 10 ancestral lineages, whereas northern Europe has a single ancestral lineage.
Genetic diversity facilitates cancer therapy
Cancer patients with more different HLA genes respond better to treatment.
Ancient Rome: a 12,000-year history of genetic flux, migrations and diversity
Scholars have been all over Rome for hundreds of years, but it still holds some secrets - for instance, relatively little is known about where the city's denizens actually came from.
Lupus study illustrates the importance of diversity in genetic research
Scientists at the HudsonAlpha Institute for Biotechnology have pinpointed epigenetic differences in the way lupus affects black women compared to other lupus patients, revealing important mechanics of the puzzling disease.
Are humans changing animal genetic diversity worldwide?
Human population density and land use is causing changes in animal genetic diversity, according to researchers at McGill University.
New human reference genome resources help capture global genetic diversity
Scientists have assembled a set of genetic sequences that enable the reference genome to better reflect global genetic diversity.
Raising a glass to grapes' surprising genetic diversity
Here's a discovery well worth toasting: A research team led by Professor Brandon Gaut with the University of California, Irvine and Professor Dario Cantu with the University of California, Davis has deciphered the genome of the Chardonnay grape.
Genetic diversity couldn't save Darwin's finches
Researchers at the University of Cincinnati found that Charles Darwin's famous finches defy what has long been considered a key to evolutionary success: genetic diversity.
Human genetic diversity of South America reveals complex history of Amazonia
The vast cultural and linguistic diversity of Latin American countries is still far from being fully represented by genetic surveys.
Vampire algae killer's genetic diversity poses threat to biofuels
New DNA analysis has revealed surprising genetic diversity in a bacterium that poses a persistent threat to the algae biofuels industry.
More Genetic Diversity News and Genetic Diversity Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab