New test method to standardize immunological evaluation of nucleic acid nanoparticles

October 23, 2020

Therapeutic nucleic acids - lab-created segments of DNA or RNA, designed be used to block or modify genes, control gene expression or regulate other cellular processes - are a promising but still emerging area of biomedical treatment, with several drugs already in use and many more in trials. Nucleic acid nanoparticles (NANPs) are programmable assemblies made exclusively of nucleic acids with a number of therapeutic nucleic acid sequences embedded in their structure in a specific configuration, designed for the packaging and delivery of a number of intercellular or extracellular treatments simultaneously, to cause multiple, therapeutic actions human cells.

Perhaps predictably for a new class of drugs, this promising new form of treatment has often run into difficulties in clinical testing. Recurring problems have kept many products under development from being approved for use, and have had a discouraging effect on continuing research. The foremost of these difficulties have been adverse immune reactions in response to the delivery of NANP-based formulations.

In a paper in Nature Protocols, nanotechnology researchers Marina Dobrovolskaia from the Frederick National Laboratory for Cancer Research, and Kirill Afonin from the University of North Carolina at Charlotte, describe the development of a reproduceable protocol that accurately assesses the qualitative and quantitative immune properties of different NANPs when used to deliver therapeutic nucleic acids.

"Ten to twenty percent of all drugs are withdrawn during clinical trials due to immunotoxicity - nucleic acid therapies are not an exception," said Afonin, whose research, among other things, focuses on NANP development and understanding immune responses to NANP's. "This is especially true for NANPs because therapeutic use of nucleic acids is a relatively young area."

"There are lots of unknown immune characteristics of NANP's that can preclude them from entering clinical trials. This inhibits research in the field, because researchers know that after billions of dollars in testing expense you may still have a drug fail because of an adverse immune reaction in trials," he noted. "So, this is the key: how can we predict carefully the immune stimulation of a drug before we put it in a patient?"

The protocol proposed in the paper is a detailed step-by-step process for assessing inflammatory properties of any given NANP design when administered to humans, using human peripheral blood mononuclear cells ("white blood cells") as a test model. The in vitro experiments performed in the paper used cells freshly drawn and isolated from the blood of over 100 healthy human donors, though the paper notes that as few as three donors could be adequate to account for individual genetic diversity in immune cells.

"Aiming for a broad sample in our studies, we used more than 100 donors and the blood was drawn over different periods of the year, so it was a very heterogeneous pool of blood cells," Afonin noted.

"This protocol is reproduceable and it uses the most accurate model," he said. "It's more predictive of cytokine storms than animal models, which is, frankly, amazing. This also makes it affordable for more researchers, because they don't have to work with animals."

A reliable and accurate standardized protocol for assessing human immune response to different particle designs can be of great value in supporting research in NANPs, the paper argues: "In order to further advance the translation of NANPs from bench to clinic, the field is in great need of reliable experimental protocols for the assessment of both safety and efficacy of these novel nanomaterials."

"This is important because there are hundreds of researchers working on NANPs and everyone has their own preferred formulation," Afonin said. "The problem is that they all also use different protocols. When you read their publications, it is difficult to say which formulation is better because the conditions that they have tested them under are completely different - there is no harmony."

While a toxic immunological response might preclude a specific NANP design from entering clinical trials, the paper notes that in some therapies, some of the specific immune responses caused by some NANPs may, in fact, be useful and desired.

The protocol measures both the quantitative nature of the cell's immune reaction - the scale of the immune response - and the qualitative nature of it - what exact kind of chemical response(s) the immune reaction causes.

"The 'quality' being measured here is what kind of interferons or cytokines will be produced in reaction to the specific NANP," he said. "Both quality and quantity are crucial questions. And sometimes the immune response is not bad or undesired - by using this protocol, we can assess the quality and quantity of the immune response of a specific NANP so it can be used - as a vaccine adjuvant, for example."

Afonin is confident that the protocol produces highly accurate results because of the extensive experimentation that went into its design.

"The steps of this protocol have been thought through and validated for more than 60 different NANP designs, generated both by my lab and by other people in the field - a very representative sample," Afonin emphasized. "Our goal is to harmonize testing and make something that will be a milestone for future research."
-end-
Research reported in the article was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM120487 (to K.A.A.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The study was also supported in part (to M.A.D.) by federal funds from the National Cancer Institute, National Institutes of Health, under contract HHSN261200800001E and 75N91019D00024. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

University of North Carolina at Charlotte

Related Immune Response Articles from Brightsurf:

Boosting chickens' own immune response could curb disease
Broiler chicken producers the world over are all too familiar with coccidiosis, a parasite-borne intestinal disease that stalls growth and winnows flocks.

Cells sacrifice themselves to boost immune response to viruses
Whether flu or coronavirus, it can take several days for the body to ramp up an effective response to a viral infection.

Children's immune response more effective against COVID-19
Children and adults exhibit distinct immune system responses to infection by the virus that causes COVID-19, a finding that helps explain why COVID-19 outcomes tend to be much worse in adults, researchers from Yale and Albert Einstein College of Medicine report Sept.

Which immune response could cause a vaccine against COVID-19?
Immune reactions caused by vaccination can help protect the organism, or sometimes may aggravate the condition.

Obesity may alter immune system response to COVID-19
Obesity may cause a hyperactive immune system response to COVID-19 infection that makes it difficult to fight off the virus, according to a new manuscript published in the Endocrine Society's journal, Endocrinology.

Immune response to Sars-Cov-2 following organ transplantation
Even patients with suppressed immune systems can achieve a strong immune response to Sars-Cov-2.

'Relaxed' T cells critical to immune response
Rice University researchers model the role of relaxation time as T cells bind to invaders or imposters, and how their ability to differentiate between the two triggers the body's immune system.

A novel mechanism that triggers a cellular immune response
Researchers at Baylor College of Medicine present comprehensive evidence that supports a novel trigger for a cell-mediated response and propose a mechanism for its action.

Platelets exacerbate immune response
Platelets not only play a key role in blood clotting, but can also significantly intensify inflammatory processes.

How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.

Read More: Immune Response News and Immune Response Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.