Extruded grains may be better for pigs

October 23, 2020

URBANA, Ill. - Extrusion is the norm in the pet and aqua feed industries, yet it remains unusual for swine feed in the United States. But the technology can improve energy and protein digestibility in pigs, according to research from the University of Illinois.

"We're not doing this much in the U.S., partly because the extrusion equipment typically is not installed in feed mills producing pig feeds. If a feed company decided they wanted to extrude diets or extrude grain by itself, as we did in this case, it would add cost. So the only way it would be economical would be if the pigs performed better with extruded grains," says Hans H. Stein, professor in the Department of Animal Sciences and the Division of Nutritional Sciences at Illinois and co-author on a study in Animal Feed Science and Technology.

Stein and his research team compared pig diets containing either extruded or unprocessed corn, wheat, and sorghum to determine ileal starch and amino acid digestibility, as well as total tract digestibility of energy and fiber. One source of each grain was ground and then divided in two batches, with one batch left as is and the other extruded in a single-screw extruder with an exit temperature of 100 degrees Celsius. Grains were ground and extruded at Kansas State University, but extrusion equipment at the new Feed Technology Center at Illinois will facilitate future research to help meet the growing global demand for animal protein.

"In extruded corn and wheat, we saw a nice improvement in amino acid digestibility. Corn in particular," Stein says. "And we observed increases for energy in extruded corn and sorghum, but not in wheat."

Starch digestibility also increased in extruded grains, compared with unprocessed grains.

"Starch is already well digested by pigs, but by extruding it, we increase its digestibility even more. And we have seen in quite a few other experiments, every time we increase starch digestibility, we increase energy digestibility," Stein says. "There's a very, very close relationship between the two."

The mechanical process of extrusion, which involves heat, pressure, and steam, leads to gelatinization of starch, which explains the link between starch and energy digestibility.

"In the extruded grains, 90% of the starch was gelatinized," Stein says. "Gelatinization opens the starch molecule, making it easier for enzymes to break down every bond within the starch. That leads to greater energy digestibility and absorption."

Fiber digestibility didn't change markedly in extruded grains versus unprocessed grains, but more of the fiber content became soluble with extrusion. "That means some of the insoluble fibers were solubilized. But because fiber digestibility didn't increase overall, that didn't have as much of an impact as we had expected," Stein says.

With pigs extracting more energy and protein from extruded grains, Stein sees a potential economic benefit that could justify the cost of adding extruding equipment to feed mills.

"If feed manufacturers can increase the energy as much as we did in our study, then there certainly is value in extruding grain for pig diets," he says.
-end-
The article, "Digestibility of amino acids, fiber, and energy by growing pigs, and concentrations of digestible and metabolizable energy in yellow dent corn, hard red winter wheat, and sorghum may be influenced by extrusion," is published in Animal Feed Science and Technology [DOI: 10.1016/j.anifeedsci.2020.114602]. Authors include Diego A. Rodriguez, Su A. Lee, Cassandra K. Jones, John K. Htoo, and Hans H. Stein. The research was supported by Evonik Nutrition & Care.

The Department of Animal Sciences, the Division of Nutritional Sciences, and the Feed Technology Center are part of the College of Agricultural, Consumer and Environmental Sciences at the University of Illinois.

University of Illinois College of Agricultural, Consumer and Environmental Sciences

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.