Exploring the source of stars and planets in a laboratory

October 23, 2020

A new method for verifying a widely held but unproven theoretical explanation of the formation of stars and planets has been proposed by researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL). The method grows from simulation of the Princeton Magnetorotational Instability (MRI) Experiment, a unique laboratory device that aims to demonstrate the MRI process that is believed to have filled the cosmos with celestial bodies.

Cosmic dust

The novel device, designed to duplicate the process that causes swirling clouds of cosmic dust and plasma to collapse into stars and planets, consists of two fluid-filled concentric cylinders that rotate at different speeds. The device seeks to replicate the instabilities that are thought to cause the swirling clouds to gradually shed what is called their angular momentum and collapse into the growing bodies that they orbit. Such momentum keeps the Earth and other planets firmly within their orbits.

"In our simulations we can actually see the MRI develop in experiments," said Himawan Winarto, a graduate student in the Princeton Program in Plasma Physics at PPPL and lead author of a paper in Physical Review E interest in the subject began as an intern in the University of Tokyo-Princeton University Partnership on Plasma Physics while an undergraduate at Princeton University.

The suggested system would measure the strength of the radial, or circular, magnetic field that the rotating inner cylinder generates in experiments. Since the strength of the field correlates strongly with expected turbulent instabilities, the measurements could help pinpoint the source of the turbulence.

"Our overall objective is to show the world that we've unambiguously seen the MRI effect in the lab," said physicist Erik Gilson, one of Himawan's mentors on the project and a coauthor of the paper. "What Himawan is proposing is a new way to look at our measurements to get at the essence of MRI."

Surprising results

The simulations have shown some surprising results. While MRI is normally observable only at a sufficiently high rate of cylinder rotation, the new findings indicate that instabilities can likely be seen well before the upper limit of the experimental rotation rate is reached. "That means speeds much closer to the rates we are running now," Winarto said, "and projects to the rotational speed that we should aim for to see MRI."

A key challenge to spotting the source of MRI is the existence of other effects that can act like MRI but are not in fact the process. Prominent among these deceptive effects are what are called Rayleigh instabilities that break up fluids into smaller packets, and Ekman circulation that alters the profile of fluid flow. The new simulations clearly indicate "that MRI, rather than Ekman circulation or Rayleigh instability, dominates the fluid behavior in the region where MRI is expected," Winarto said.

The findings thus shed new light on the growth of stars and planets that populate the universe. "Simulations are very useful to point you in the right direction to help interpret some of the diagnostic results of experiments," Gilson said. "What we see from these results is that the signals for MRI look like they should be able to be seen more easily in experiments than we had previously thought."
-end-
Funding for this work comes from the U.S. Department of Energy Office of Science; NASA; and the Max- Planck-Princeton Center for Plasma Physics. Collaborators include PPPL physicists Fatima Ebrahimi and Yin Wang; Hantao Ji, a PPPL physicist and professor of astrophysical sciences at Princeton University; and Jeremy Goodman, professor of astrophysical sciences at Princeton University. Jean-Luc Guermond of Texas A&M University provided the SFEMaNS simulation code used extensively in the paper.

PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas -- ultra-hot, charged gases -- and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy's Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit energy.gov/science.

DOE/Princeton Plasma Physics Laboratory

Related Planets Articles from Brightsurf:

Stars and planets grow up together as siblings
ALMA shows rings around the still-growing proto-star IRS 63

Two planets around a red dwarf
The 'SAINT-EX' Observatory, led by scientists from the National Centre of Competence in Research NCCR PlanetS of the University of Bern and the University of Geneva, has detected two exoplanets orbiting the star TOI-1266.

Some planets may be better for life than Earth
Researchers have identified two dozen planets outside our solar system that may have conditions more suitable for life than our own.

Fifty new planets confirmed in machine learning first
Fifty potential planets have had their existence confirmed by a new machine learning algorithm developed by University of Warwick scientists.

Rogue planets could outnumber the stars
An upcoming NASA mission could find that there are more rogue planets - planets that float in space without orbiting a sun - than there are stars in the Milky Way, a new study theorizes.

Could mini-Neptunes be irradiated ocean planets?
Many exoplanets known today are ''super-Earths'', with a radius 1.3 times that of Earth, and ''mini-Neptunes'', with 2.4 Earth radii.

As many as six billion Earth-like planets in our galaxy, according to new estimates
There may be as many as one Earth-like planet for every five Sun-like stars in the Milky way Galaxy, according to new estimates by University of British Columbia astronomers using data from NASA's Kepler mission.

How planets may form after dust sticks together
Scientists may have figured out how dust particles can stick together to form planets, according to a Rutgers co-authored study that may also help to improve industrial processes.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

The rare molecule weighing in on the birth of planets
Astronomers using one of the most advanced radio telescopes have discovered a rare molecule in the dust and gas disc around a young star -- and it may provide an answer to one of the conundrums facing astronomers.

Read More: Planets News and Planets Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.