Different Alzheimer's Genes Create Same Problem In Mouse Brain

October 23, 1997

A new study suggests the amyloid plaques that form in the brains of Alzheimer's disease patients are not the end products of the disease but the beginning of it, according to Johns Hopkins scientists.

Researchers showed in genetically engineered mice that a gene linked to a form of Alzheimer's disease that runs in families dramatically increased the speed at which amyloid peptides were made and clumped together to form plaques.

"This gene is not the only force behind accelerated deposition of the plaques, but our findings add to the growing body of evidence supporting the view that this deposition is an early and critical event in Alzheimer's disease," says David Borchelt, Ph.D., an associate professor of pathology.

The findings add to the hope that stopping the early changes with drugs might stop the development of Alzheimer's disease, according to Borchelt.

The study was supported by the National Institutes of Health, the U.S. Public Health Service, and private organizations including the Alzheimer's Association, the Develbliss Fund and the Adler Foundation.

Researchers worked with two mutated human genes that cause AD in patients whose disease runs in their families and starts earlier in life than the more common, non-inherited form of AD.

Amyloid-precursor protein (APP) provides the raw material that forms plaques. The other gene, presenilin 1, is linked to a highly aggressive inheritable form of Alzheimer's, but how it causes the disease is less clear.

When the researchers generated mice with a mutated form of APP linked to Alzheimer's disease, the mice developed amyloid plaques at the end of their normal lifespan.

A second group of mice with both mutated APP and presenilin developed numerous amyloid deposits at a much younger age, indicating that presenilin accelerated the rate of plaque formation.

Borchelt says brain levels of amyloid-beta peptide, the substance that clumps to form the plaques, only moderately increased in the second group of mice. However, that increase was enough to halve the time it took for plaques to form.

"A drug that can create a modest reduction in amyloid-beta peptides in the human brain might therefore be able to slow the start of Alzheimer's for many years or even decades," speculates Sangram Sisodia, Ph.D., associate professor of pathology and neuroscience.

Mice for the study were bred by researchers at the National Cancer Institute's Frederick, Md., research center.

Other authors on the paper were Tamara Ratovitski, Judy van Lare, Michael Lee, Vicki Gonzales, Nancy Jenkins, Neal Copeland and Donald Price.


Media contact: Michael Purdy (410)955-8725
E-mail: mpurdy@welchlink.welch.jhu.edu

Johns Hopkins Medicine

Related Amyloid Plaques Articles from Brightsurf:

Amyloid deposits not associated with depression in the elderly
Researchers have suspected that Aβ deposits might also underlie the cognitive decline seen in older people with depression, however a new study from researchers at the University of California, San Francisco (UCSF) has found that abnormal Aβ deposits were actually found in fewer older adults with major depression compared to non-depressed control subjects.

Nanodevices for the brain could thwart formation of Alzheimer's plaques
Researchers designed a nanodevice with the potential to prevent peptides from forming dangerous plaques in the brain in order to halt development of Alzheimer's disease.

New mathematical model for amyloid formation
Scientists report on a mathematical model for the formation of amyloid fibrils.

Nanoparticle chomps away plaques that cause heart attacks
Michigan State University and Stanford University scientists have invented a nanoparticle that eats away -- from the inside out -- portions of plaques that cause heart attacks.

What comes first, beta-amyloid plaques or thinking and memory problems?
The scientific community has long believed that beta-amyloid, a protein that can clump together and form sticky plaques in the brain, is the first sign of Alzheimer's disease.

Staging β-amyloid pathology with amyloid positron emission tomography
This multicenter study used in vivo β-amyloid cerebrospinal fluid, a biomarker of Alzheimer disease, and positron emission tomography findings to track progression of Alzheimer disease over six years among study participants.

Alzheimer's disease protein links plaques to cell death in mice
A new protein involved in Alzheimer's disease (AD) has been identified by researchers at the RIKEN Center for Brain Science (CBS).

Atherosclerosis: Induced cell death destabilizes plaques
Many chronic disorders arise from misdirected immune responses. A Ludwig-Maximilians-Universitaet (LMU) in Munich team led by Oliver Söhnlein now shows that neutrophils exacerbate atherosclerosis by inducing smooth muscle-cell death and that a tailored peptide inhibits the process.

Stranded dolphins have amyloid plaques in their brains
Dolphins stranded on the beaches of Florida and Massachusetts show in their brains amyloid plaques, a hallmark in human beings of Alzheimer's disease, together with an environmental toxin produced by cyanobacterial blooms.

Technique uses well-known dye to watch amyloid plaques in the brain
New work repurposing one of the oldest known reagents for amyloid looks to help provide a clearer picture of how fibrils come together.

Read More: Amyloid Plaques News and Amyloid Plaques Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.