Methane bacteria possess pressure valve

October 24, 2002

Microbiologists from the University of Nijmegen have discovered that a methane-forming archaeabacterium sometimes deliberately allows hydrogen ions to leak out of its cell. At high hydrogen concentrations in particular, the cell membrane works as a sort of pressure valve. The waste of energy seems to be of vital importance for the microorganism.

The researchers examined how a bacterium adapts to changing circumstances. The study focussed on the behaviour of the relatively simple methane producing microorganism Methanothermobacter thermoautotrophicus. In order to grow, this so-called archaeabacterium obtains hydrogen from the environment. However, the quantity of hydrogen, that is the food available, can vary considerably. The methane bacterium seems to use this to its advantage.

At high hydrogen concentrations, thus an excess of food, the bacterium grows as quickly as possible. In so doing the organism loses energy but at this point in time plenty of energy is available anyway. Furthermore, this wastage is a bonus as it results in the difference between the hydrogen ion concentrations inside and outside of the cell becoming smaller. Under these circumstances this is desirable, as otherwise a range of processes in the cell might cease to continue.

The observations confirm the prediction made in a mathematical model. That model, constructed by the Nijmegen research group, not only predicted that the methane bacteria would waste energy, but also how that would occur. At high hydrogen concentrations the microorganism would allow hydrogen ions to leak through the cell membrane. In this case the cell membrane would act as a sort of excess pressure valve.

The model summarises about 2000 different reactions in a small number of biochemical and thermodynamic equations. The researchers have now subjected the model and the assumptions on which it is based to extensive experimental testing. As had been assumed, the important reactions in the methane-forming process proceeded without energy loss.

Despite its relative simplicity, the model seems to accurately predict the behaviour of the microorganism. This implies that apparently complicated processes can in fact be determined by simple thermodynamic principles.

The researchers expect that this is not only the case for methane-forming bacteria but might also apply to other forms of life. This means that the research is not only interesting for microbiologists, but also for chemists, physicians, botanists and zoologists.
Further information can be obtained from Dr Linda de Poorter, e-mail or assistant supervisor Dr Jan Keltjens, tel.31-243-653-437, fax 31-243-652-830, e-mail The doctoral thesis was defended on 15 October 2002. Dr De Poorter's supervisor was Prof. G.D. (Fried) Vogels. Linda de Poorter will be in Japan for 2 years from 20 October 2002.

The research was funded by the Netherlands organisation for Scientific Research (NWO).

Netherlands Organization for Scientific Research

Related Methane Articles from Brightsurf:

When methane-eating microbes eat ammonia instead
As a side effect of their metabolism, microorganisms living on methane can also convert ammonia.

Making more of methane
Looking closely at the chemical process that transforms methane into useful products could help unveil more efficient ways to use natural gas.

Methane: emissions increase and it's not a good news
It is the second greenhouse gas with even a global warming potential larger than CO2.

Measuring methane from space
A group of researchers from Alaska and Germany is reporting for the first time on remote sensing methods that can observe thousands of lakes and thus allow more precise estimates of methane emissions.

New 3D view of methane tracks sources
NASA's new 3-dimensional portrait of methane concentrations shows the world's second largest contributor to greenhouse warming.

Show me the methane
Though not as prevalent in the atmosphere as carbon dioxide, methane is a far more potent greenhouse gas.

Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.

Microorganisms reduce methane release from the ocean
Bacteria in the Pacific Ocean remove large amounts of the greenhouse gas methane.

Origin of massive methane reservoir identified
New research provides evidence of the formation and abundance of abiotic methane -- methane formed by chemical reactions that don't involve organic matter -- on Earth and shows how the gases could have a similar origin on other planets and moons, even those no longer home to liquid water.

Unexpected culprit -- wetlands as source of methane
Knowing how emissions are created can help reduce them.

Read More: Methane News and Methane Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to