Study: Acidic surfaces on atmospheric aerosols greatly increase secondary aerosol formation

October 24, 2002

CHAPEL HILL -- Atmospheric particles that become acidic through exposure to such pollutants as sulfuric acid can lead to vast increases in the formation of secondary organic aerosols, a new study indicates. Such aerosols are major components of the unsightly haze that hangs over cities and oil refineries and even affects otherwise pristine U.S. national parks.

A report on the research appears in Friday's (Oct. 25) issue of the journal Science. Authors, all at the University of North Carolina at Chapel Hill, are Dr. Myoseon Jang, research associate; doctoral students Nadine M. Czoschke and Sangdon Lee; and Richard M. Kamens, professor of environmental sciences and engineering at the UNC School of Public Health.

"We think this exciting work is potentially very important and so do other scientists we have discussed it with across the United States," said Kamens. "What Dr. Jang has done in our laboratory was to discover an acid-catalyzed process that brings about secondary organic aerosol formation. "She also has found that this under-appreciated reaction may generate five to 10 times more aerosol in the atmosphere than we previously thought," he said. "It appears to explain a number of different kinds of phenomena that lead to aerosol formation."

Jang's "ground-breaking" new research involves testing aerosols in reaction chambers and large outdoor smog chambers and determining what happens to them under varying experimental conditions, Kamens said.

In the new work, scientists introduced fine inert particles known as seed aerosols into Teflon film reaction chambers, he said. Into some chambers they injected identical particles coated with 2 percent to 5 percent sulfuric acid, which is about the same level found on tiny bits of floating diesel soot.

"What they did then was to introduce into the gas phase atmosphere of the chambers aldehydes and alcohols," Kamens said. "Dr. Jang found that when the aldehydes and alcohols were present, there was a huge increase in the amount of aerosol that formed."

Studies with a variety of different aldehydes, which are formed in the atmosphere by oxidation of emitted hydrocarbons, revealed that some aldehydes derived from aromatic compounds were far more reactive in producing aerosols than scientists believed. Aromatic compounds come largely from automobile and other exhausts, while trees generate massive amounts of terpenoid hydrocarbons, which also form aldehydes and particles in the atmosphere subject to similar acid-catalyzed aerosol-producing reactions.

Jang's discovery appears to fill an important hole in scientists' understanding of atmospheric chemistry, Kamens said. Her data also mirrors natural data collected by a Rutgers University team in the Appalachians' Smoky Mountains under the direction of Dr. Barbara Turpin.

"People from NOAA -- the National Oceanic and Atmospheric Administration -- got very excited about this work at a recent aerosol research meeting in Charlotte," he said. "That was because it seems to explain atmospheric reactions going on over Houston, where refineries produce very large emissions of volatile organic compounds and also sulfur dioxide.

"Using Dr. Jang's theory and findings, they immediately thought that what has been happening there was that sulfur dioxide was being oxidized as sulfuric acid. Then the sulfuric acid was acid-catalyzing organic reactions in the plume over the petroleum refineries to form huge, huge bursts of particles that nobody really understood before."

The UNC experiments should lead to new insights into global warming, photochemical reactions and weather and, possibly, some useful manipulation of them, Kamens said. They also could have important implications for pollution control and health.

"Environmental Protection Agency researchers also have said they are very interested in this work, and we're going to share our information with them soon," he said.

Mathematical models the team is creating will help them predict what would happen in the atmosphere in response to lowering volatile organic emissions and other pollutants from cars, refineries and other sources, the scientist said.
-end-
The National Science Foundation's Atmospheric Chemistry Division and the EPA's STAR (Science to Achieve Results) program supported the exploratory studies with grants to Kamens' research group.

Note: Kamens and Lee can be reached at (919) 966-5452 and 966-3861, respectively, or kamens@unc.edu and mjang@email.unc.edu

By DAVID WILLIAMSON
UNC News Services


University of North Carolina at Chapel Hill

Related Aerosols Articles from Brightsurf:

Reducing aerosol pollution without cutting carbon dioxide could make the planet hotter
Humans must reduce carbon dioxide and aerosol pollution simultaneously to avoid weakening the ocean's ability to keep the planet cool, new UC Riverside research shows.

NASA's Terra highlights aerosols from western fires in danger zone
The year 2020 will be remembered for being a very trying year and western wildfires have just added to the year's woes.

NOAA-NASA Suomi NPP captures fires and aerosols across America
On Sep. 07, 2020, NOAA/NASA's Suomi NPP satellite provided two different views of how fires are affecting the US.

Low humidity increases COVID risk; another reason to wear a mask
University of Sydney study confirms a link between COVID-19 cases and lower humidity.

Summer observation campaigns to study pollution in the Asian tropopause layer
Scientists find the aerosols in the boundary layer are mostly pollution out of human activities, and the aerosols in the upper troposphere may also contain natural aerosols, like mineral dust and volcanic sulfate aerosols,

Masks reduce airborne transmission of SARS-CoV-2
Growing evidence suggests that SARS-CoV-2, the novel coronavirus that causes COVID-19, can be spread by asymptomatic people via aerosols -- a reality that deeply underscores the ongoing importance of regular widespread testing, wearing masks and physical distancing to reduce the spread of the virus, say Kimberly Prather and colleagues in a new Perspective.

Fire aerosols decrease global terrestrial ecosystem productivity through changing climate
Cooling, drying, and light attenuation are major impacts of fire aerosols on the global terrestrial ecosystem productivity.

Study: Aerosols have an outsized impact on extreme weather
A reduction in manmade aerosols in Europe has been tied to a reduction in extreme winter weather in the region.

Agricultural area residents in danger of inhaling toxic aerosols
Excess selenium from fertilizers and other natural sources can create air pollution that could lead to lung cancer, asthma, and Type 2 diabetes, according to new UC Riverside research.

Satellite tracking shows how ships affect clouds and climate
By matching the movement of ships to the changes in clouds caused by their emissions, researchers have shown how strongly the two are connected.

Read More: Aerosols News and Aerosols Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.