The glutamate decarboxylase 1 gene may play a pivotal role in developing alcoholism

October 24, 2006

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain. GABA has been implicated in the development of alcoholism, although the mechanisms through which this occurs are unclear. A recent "association" study has found that an enzyme called glutamate decarboxylase (GAD) - which is involved in the synthesis of GABA - may play a significant role.

Results are published in the November issue of Alcoholism: Clinical & Experimental Research.

"GABA's main function is to inhibit excitatory neuro-activities so that the brain can remain stable," said Andrew T.A. Cheng, Distinguished Research Fellow and professor at Academia Sinica in Taipei. "When one consumes alcohol, GABA levels rise in the brain, providing sedative effects. When one drinks regularly, a counter mechanism is set up until gradually, the ability to raise GABA is reduced. Defects in GABA synthesis may push one to drink more alcohol in order to treat abnormal physiology caused by low GABA Furthermore, individuals who release GABA slowly during alcohol consumption may consume more alcohol to reach its sedative effects, exposing themselves to a higher risk of alcohol dependence." Cheng is also the corresponding author for the study.

"This study takes a so-called candidate gene approach to explore the possible role of GABA in the development of alcoholism," observed Wei-Jen Chen, director of the Institute of Epidemiology at the National Taiwan University Hospital. "GAD has two forms, encoded by the GAD1 and GAD2 genes that are located in different chromosomes, and is involved in the production of GABA from glutamate. This knowledge is mainly derived from studies on mice, whereas human studies so far point to the potential role of GAD in schizophrenia."

Researchers examined two groups of Han Taiwanese men recruited from community and clinical settings: 140 who met Diagnostic and Statistical Manual-III-R criteria for alcohol dependence (22 to 69 years of age); and 146 individuals without alcohol dependence (41 to 84 years of age).

"This is the first study reporting a significant association of the GAD1 gene with the development of alcoholism," said Cheng. "Because GAD1 is the major enzyme in the synthesis of GABA, GAD1 may act as a common factor in the development of common diseases across populations, including alcoholism."

"Although statistical analyses seem to indicate that certain genetic variants of the GAD1 gene were associated with alcohol dependence," added Chen, "the meaning of this association remains to be clarified. For example, one may guess that these genetic variants are probably merely markers that are closely located to a 'real' susceptibility gene for alcohol dependence and hence form 'linkage disequilibrium' with it. Nonetheless, this study does remind researchers that GAD might be involved in maintenance of GABA levels. People with a lower GABA level that is attributed to a less active form of GAD may have a greater chance to drink alcohol to help augment the effects of the inhibitory neurotransmission exerted by GABA. This may also help explain co-occurring anxiety disorders in people with alcohol dependence."

For example, said Chen, patients with schizophrenia are known to have an increased co-occurrence of substance use disorders. Given that the GAD gene has been implicated in genetic susceptibility to schizophrenia too ... "it might be that the GAD gene confers a common liability to both alcohol dependence and schizophrenia," he said, "probably via the dysfunction of the GABA-related neurotransmission."

Nonetheless, said Cheng, "in order to become an alcoholic, one must be exposed to alcohol first. An individual's genetic background may play a role in pushing someone to become an alcoholic by creating physical and psychological memories that lead to a further demand for alcohol. Our findings may provide a scientific basis to further explore GABA involvement in the development of alcoholism. Advances in this field are likely to create new treatment strategies in alcoholism, either by modern molecular intervention, traditional chemical therapeutics, or psychological approaches based on a GABA-deficit theory."
-end-
Alcoholism: Clinical & Experimental Research (ACER) is the official journal of the Research Society on Alcoholism and the International Society for Biomedical Research on Alcoholism. Co-authors of the ACER paper, "Glutamate decarboxylase genes and alcoholism in Han Taiwanese men," were: El-Wui Loh of the Division of Mental Health and Drug Abuse Research at the National Health Research Institutes in Taipei; Hsien-Yuan Lane of the Department of Psychiatry at the China Medical University Hospital in Taichung; and Pi-Shan Chang and Li-Wen Ku, Chien-Hsiun Chen and Kathy H.T. Wang of the Institute of Biomedical Sciences at Academia Sinica in Taipei. The study was funded by the National Science Council, and the Academia Sinica of Taipei.

Alcoholism: Clinical & Experimental Research

Related Schizophrenia Articles from Brightsurf:

Schizophrenia: When the thalamus misleads the ear
Scientists at the University of Geneva (UNIGE) and the Synapsy National Centre of Competence in Research (NCCR) have succeeded in linking the onset of auditory hallucinations - one of the most common symptoms of schizophrenia - with the abnormal development of certain substructures of a region deep in the brain called the thalamus.

Unlocking schizophrenia
New research, led by Prof. LIU Bing and Prof. JIANG Tianzi from the Institute of Automation of the Chinese Academy of Sciences and their collaborators have recently developed a novel imaging marker that may help in the personalized medicine of psychiatric disorders.

Researchers discover second type of schizophrenia
In a study of more than 300 patients from three continents, over one third had brains that looked similar to healthy people.

New clues into the genetic origins of schizophrenia
The first genetic analysis of schizophrenia in an ancestral African population, the South African Xhosa, appears in the Jan.

Dietary supplement may help with schizophrenia
A dietary supplement, sarcosine, may help with schizophrenia as part of a holistic approach complementing antipsychotic medication, according to a UCL researcher.

Schizophrenia: Adolescence is the game-changer
Schizophrenia may be related to the deletion syndrome. However, not everyone who has the syndrome necessarily develops psychotic symptoms.

Study suggests overdiagnosis of schizophrenia
In a small study of patients referred to the Johns Hopkins Early Psychosis Intervention Clinic (EPIC), Johns Hopkins Medicine researchers report that about half the people referred to the clinic with a schizophrenia diagnosis didn't actually have schizophrenia.

The ways of wisdom in schizophrenia
Researchers at UC San Diego School of Medicine report that persons with schizophrenia scored lower on a wisdom assessment than non-psychiatric comparison participants, but that there was considerable variability in levels of wisdom, and those with higher scores displayed fewer psychotic symptoms.

Recognizing the uniqueness of different individuals with schizophrenia
Individuals diagnosed with schizophrenia differ greatly from one another. Researchers from Radboud university medical center, along with colleagues from England and Norway, have demonstrated that very few identical brain differences are shared amongst different patients.

Resynchronizing neurons to erase schizophrenia
Today, a decisive step in understanding schizophrenia has been taken.

Read More: Schizophrenia News and Schizophrenia Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.