Hubble yields direct proof of stellar sorting in a globular cluster

October 24, 2006

Imagine trying to understand how a football game works based on just a few fuzzy snapshots of the game in play. This is the just the kind of challenge faced by astronomers trying to understand the dynamics of the swarm of stars in the globular star clusters that orbit our Milky Way Galaxy. The NASA/ESA Hubble Space Telescope has provided the best observational evidence to date that globular clusters sort stars according to their mass, governed by a gravitational billiard ball game between stars. Heavier stars slow down and sink to the cluster's core, while lighter stars pick up speed and move out across the cluster to its periphery. This process, called mass segregation, has long been suspected for globular star clusters, but has never been seen in action directly before.

A typical globular cluster contains several hundred thousand stars. Although the density of stars is very small at the outskirts of such clusters, near the centre it can be more than 10,000 times higher than in the local vicinity of our Sun. If we lived in such a crowded region of space, the night sky would be ablaze with 10,000 stars, all closer to us than the nearest star to the Sun, Alpha Centauri, which is 4.3 light-years away (or approximately 215,000 times the distance between Earth and the Sun). Just as bumps and jostles are much more likely in a crowded commuter train, so are encounters between stars in a densely populated cluster more likely than here in our quiet stellar backwater. These encounters can be as dramatic as collisions or even mergers. Theory predicts that the cumulative result of many such encounters is mass segregation, but the crowded conditions make it extremely difficult to identify individual stars accurately.

Astronomers needed Hubble's pinpoint resolution to trace the motions of many thousands of stars in a single globular cluster. Highly accurate speeds have been measured for almost 15,000 stars at the very centre of the nearby globular cluster 47 Tucanae - one of the densest globular clusters in the southern hemisphere. 23 of these stars are of a very rare type known as "blue stragglers": unusually hot and bright stars thought to be the product of collisions between two normal stars.

The slower measured velocities of the blue straggler stars agree with the predictions of mass segregation. In particular, a comparison between blue stragglers (that have twice the mass of the average star) and other stars shows that, as expected, they do move more slowly than the more typical, lighter stars.

Georges Meylan of the École Polytechnique Federale de Lausanne (EPFL) in Sauverny, Switzerland and collaborators took ten sets of multiple images of the central region (within about 6 light-years of the centre) of 47 Tucanae using Hubble's Wide Field and Planetary Camera 2 and the newer Advanced Camera for Surveys. Images were taken at regular intervals over nearly seven years. Extremely small position changes could be measured over time by carefully measuring the positions of as many as 130,000 stars in every one of these "snapshots", revealing the motions of the stars across the sky.

The velocities of 15,000 stars were measured precisely. This is the largest sample of velocities ever gathered for a globular cluster in the Milky Way by any technique with any instrument. The results were also used to look for the gravitational pull of a black hole to check whether one exists in the cluster's core. The measured stellar motions have ruled out the presence of a very massive black hole.

The study would have been impossible without Hubble's sharp vision. From the ground, the smearing effect of the Earth's atmosphere blurs the individual images of the numerous stars in the crowded cluster core. The typical angular motion of even the normal stars in the centre of 47 Tucanae was found to be just over one ten millionth of a degree (equivalent to the angular size of a 10 cent coin seen from 7,000 kilometres away) per year.

To take full advantage of these exquisite Hubble images, astronomers developed entirely new data analysis methods that eventually provided measurements of proper motions (velocities) that corresponded to changes in the positions of stars at the level of about 1/100th of a pixel (picture-element) on Hubble's digital cameras.
-end-


ESA/Hubble Information Centre

Related Globular Cluster Articles from Brightsurf:

Image release: Galaxies in the Perseus Cluster
New VLA images show how the crowded environment of a cluster of galaxies affects the individual galaxies, helping astronomers better understand some of the complex details of such an environment.

Low-metallicity globular star cluster challenges formation models
On the outskirts of the nearby Andromeda Galaxy, researchers have unexpectedly discovered a globular cluster (GC) - a massive congregation of relic stars - with a very low abundance of chemical elements heavier than hydrogen and helium (known as its metallicity), according to a new study.

Is it one or two species? The case of the cluster anemones
Their scientific name is ''Parazoanthus axinellae'' and they are among the most fascinating corals of the Mediterranean Sea.

Discovered: Remnant of ancient globular cluster that's "the last of its kind"
A team of astronomers discovered a stellar stream composed of the remnants of an ancient globular cluster that was torn apart by the Milky Way's gravity 2 billion years ago, when Earth's most-complex lifeforms were single-celled organisms.

Age of NGC 6652 globular cluster specified
Senior Research Associate Margarita Sharina (Special Astrophysical Observatory) and Associate Professor Vladislav Shimansky (Kazan Federal University) studied the globular cluster NGC 6652.4.05957 and found out that its age is close to 13.6 billion years, which makes it one of the oldest objects in the Milky Way.

New aspects of globular glial tauopathy could help in the design of more effective drugs
This study, led by Dr. Isidre Ferrer, has described that protein inclusions that damage neurons and glial cells are responsible for the pathology showed by globular glial tauopathy patients.

Rhythmicity of cluster headache
Although it is known that CH patients exhibit circadian rhythmicity of attacks, new data add a new feature with regard to the rhythmicity of attacks throughout the disease course.

HKU astronomy research team unveils one origin of globular clusters around giant galaxies
A study led by Dr Jeremy Lim and his Research Assistant, Miss Emily Wong, at the Department of Physics of The University of Hong Kong (HKU), utilizing data from the Hubble Space Telescope, has provided surprising answers to the origin of some globular clusters around giant galaxies at the centers of galaxy clusters.

Thousands of new globular clusters have formed over the last billion years
A discovery made by prestigious researchers including Thomas Broadhurst, the professor at the UPV/EHU's Department of Theoretical Physics and History of Science, has been recently published by the journal Nature Astronomy.

Hubble snaps a crowded cluster
This sparkling burst of stars is Messier 75. It is a globular cluster: a spherical collection of stars bound together by gravity.

Read More: Globular Cluster News and Globular Cluster Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.