Taking a close look, whatever the scale

October 24, 2013

Following the 50 km/h crash test, all that was left of the car was a heap of metal - one that contains valuable information on how vehicle safety could be improved. But the only way engineers can get at this information is if they can see inside the vehicle to analyze how its individual components reacted to the force of the impact. The typical two-dimensional X-ray images used in conventional materials testing are often not accurate enough, as what they show is no more than a kind of shadow-picture taken from a single angle. Computed tomography (CT) offers researchers many more possibilities for examining components: By recording parts in all three dimensions, it allows them to be measured and inspected in a contact-free and non-destructive way. But how do you fit an entire car into a CT scanner?

XXL CT scanner developed for shipping containers

Scientists at the Fraunhofer Institute for Integrated Circuits IIS have the answer. They have developed a huge CT scanner that will in future scan cars, airplane wings and even entire shipping containers. It works as follows: First, the object to be examined is hoisted onto a giant turntable. As it turns, an X-ray source on one side of the object moves up and down, and these movements are mirrored by a four-meter-long X-ray detector on the other. The readings are sent to a computer, which then generates a three-dimensional image. "We have never been able to carry out non-destructive materials testing on this scale before," says Professor Randolf Hanke, director of the Fraunhofer Development Center X-ray Technology EZRT. At the resolution the system currently achieves - which at 0.8 mm is already extremely high - scientists can make out even the tiniest of details with pin-sharp precision on objects that are several meters in size. Researchers hope soon to improve the resolution even further to 0.4 mm. Some of the potential uses for this technology include bringing prototypes of new cars into alignment with design data, or spotting material failures such as minuscule cracks in automotive or aircraft components. Security forces could use the giant scanner to detect explosives or other prohibited objects in shipping containers without having to open them.

CT machine heading for nanoscale scans

This giant piece of equipment has a counterpart that Prof. Hanke can comfortably carry around with him wherever he goes. No bigger than a microwave oven, and with a resolution of 0.02 mm, it can scan anything from the smallest plastic parts to biological samples. Now that they have developed what is currently the smallest portabel CT scanner in the world, Prof. Hanke and his team are already working on the next innovation: a device that will be able to push the limits of geometric magnification down to even higher resolutions. The aim is to be able to scan at nanoscale level, that is to say, at a magnitude of under 100 nanometers. This vision has been driving Prof. Hanke's research for the last 15 years. He and his team of students and postgraduates at the Chair of X-ray Microscopy at the University of Würzburg recently enjoyed a significant breakthrough. "We've now succeeded in customizing an electron microscope in such a way that it is able to produce a nano X-ray source," he explained. The clever part is that the electric charge carriers that generate the X-rays are conducted onto the side of a thin needle. The resulting X-rays emitted from the tip of this needle deliver a precise focal point 50 nm in diameter for scanning nanoscale objects in clearly defined detail. One thing this technology would allow biologists to do is to analyze the way water is transported within wood fibers.

In July of this year, the new EZRT building was officially opened in Fürth-Atzenhof, and Prof. Hanke is very pleased: "This new building, which will be home to our industrial computed tomography activities, allows us to pool our expertise to address problems at any scale in a wide range of fields. Our equipment and understanding of the process means we can scan everything from ancient works of art to entire wind turbines."


Related Computed Tomography Articles from Brightsurf:

Prehistoric shark hid its largest teeth
Some, if not all, early sharks that lived 300 to 400 million years ago not only dropped their lower jaws downward but rotated them outwards when opening their mouths.

Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids
Optical coherence tomography offers astounding opportunities to image the complex structure of living tissue but lacks functional information.

Cryo-electron tomography reveals uromodulin's role in urinary tract infection protection
Free-flowing filaments of Uromodulin protect against urinary tract infections (UTIs) by duping potentially harmful bacteria to attach to their fishbone-like molecular architecture - rather than to sensitive urinary tract tissues - before being flushed out of the body during urination, researchers report.

Tomography studies of coins shed light on the history of Volga Bulgaria
Kazan Federal University, Joint Institute for Nuclear Research (Dubna, Russia), and Khalikov Institute of Archeology (Tatarstan Academy of Sciences, Kazan, Russia) are working together to study the physical properties of the coins found on the territory of former Volga Bulgaria.

COVID-19 news from Annals of Internal Medicine
In this Ideas and Opinions piece from the University of California, San Francisco and San Francisco Veterans Affairs Medical Center, the authors discuss the findings of early studies that addressed the use of chest computed tomography for the detection of COVID-19.

Scientists pair machine learning with tomography to learn about material interfaces
Researchers have put a new technique based on machine learning to work uncovering the secrets of buried interfaces and edges in a material.

A convex-optimization-based quantum process tomography method for reconstructing quantum channels
Researchers from SJTU have developed a convex-optimization-based quantum process tomography method for reconstructing quantum channels, and have shown the validity to seawater channels and general channels, enabling a more precise and robust estimation of the elements of the process matrix with less demands on preliminary resources.

Faster than ever -- neutron tomography detects water uptake by roots
The high-speed neutron tomography developed at HZB generates a complete 3D image every 1.5 seconds and is thus seven times faster than before.

Staging β-amyloid pathology with amyloid positron emission tomography
This multicenter study used in vivo β-amyloid cerebrospinal fluid, a biomarker of Alzheimer disease, and positron emission tomography findings to track progression of Alzheimer disease over six years among study participants.

NLST follow up reaffirms that low dose CT reduces lung cancer mortality
The authors of the National Lung Cancer Screening Trial report on an extended analysis of the patient cohort that was followed up on after the 2011 study was published.

Read More: Computed Tomography News and Computed Tomography Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.