WUSTL researchers developing hospital patient early warning system

October 24, 2013

A team of Washington University in St. Louis engineers and physicians is combining areas of expertise to prevent hospitalized patients from deteriorating while in the hospital and from being readmitted soon after discharge.

Nearly 20 percent of hospital patients are readmitted within 30 days of discharge, a $15 billion problem for both patients and the health-care system. Under the Affordable Care Act, Medicare is reducing its payments to hospitals with excessive readmission rates.

Yixin Chen, PhD, associate professor of computer science & engineering in the School of Engineering & Applied Science, has received a $718,042 grant from the National Science Foundation to mine data from hospital records to improve an early warning system that has been tested at Barnes-Jewish Hospital for several years. He is collaborating with Chenyang Lu, PhD, professor of computer science & engineering; Thomas Bailey, MD, and Marin Kollef, MD, both professors of medicine at the School of Medicine.

With the funding, Chen and his colleagues will develop a large database gathering data from various sources, including 34 vital signs, from routine clinical processes, real-time bedside monitoring and existing electronic data sources from patients in general wards at Barnes-Jewish Hospital. Then they will develop algorithms that will mine and analyze the data looking for any signs of potential deterioration or life-threatening event in a patient, such as a heart attack, stroke or septic shock.

First, they will apply their algorithms to the patient data, such as blood pressure, heart rate and oxygen saturation, to identify patients at high-risk for their condition to worsen. Those identified as being at risk will then be attached to a commercial sensor that provides data on vital signs every minute, then transmits the data wirelessly to a server, where a second algorithm will analyze it to predict deterioration. The system will also provide an alert to physicians on the patients' deteriorating condition with an explanation of the cause and suggest possible interventions.

"Our algorithms can detect potential deterioration by finding hidden patterns in large amounts of data," Chen says. "These hidden patterns are hard to be detected manually."

Although early warning systems exist, Chen says they are inadequate because they require monitoring by overburdened clinical staff. But the team's early warning system would not require any additional work by patient-care staff because it uses existing data, Kollef says. Kollef and Bailey have been working on such a system for about eight years in response to a mandate by the Institute for Healthcare Improvement that hospitals reduce cardiac arrests and other sudden, life-threatening events in patients on general medical floors by implementing a system of Rapid Response Teams. Because they wanted to expand the early warning system and make improvements, they brought in Chen and Lu for their engineering expertise.

"Being physicians, this is something for which we need a lot of support from the Engineering school," Kollef says. "It's a nice example of taking the clinical side and the engineering side and bringing them together to come up with a solution for a problem that hasn't had a good solution in the past."

Together, they plan to conduct a clinical study to evaluate the proposed system with the goal of using the technology in clinical practice to reduce patient mortality rates and hospital readmissions as well as to improve administration of the U.S. health-care system.

Chen says the data will be kept secure through the hospital's security standards and through a secure VPN connection with state-of-the-art encryption. No personal information will be included with the data.
For more information, visit http://www.cse.wustl.edu/~wenlinchen/project/clinical/

The School of Engineering & Applied Science at Washington University in St. Louis focuses intellectual efforts through a new convergence paradigm and builds on strengths, particularly as applied to medicine and health, energy and environment, entrepreneurship and security. With 82 tenured/tenure-track and 40 additional full-time faculty, 1,300 undergraduate students, 700 graduate students and more than 23,000 alumni, we are working to leverage our partnerships with academic and industry partners -- across disciplines and across the world -- to contribute to solving the greatest global challenges of the 21st century.

Washington University in St. Louis

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.