US Navy awards $8 million to develop wave, tidal energy technology

October 24, 2014

The U.S. Navy has committed to get half of its energy from renewable sources by the year 2020. One element of that strategy will be looking to extract energy from tides, currents and waves. The University of Washington is helping to reach that goal with an $8 million, four-year contract from the Naval Facilities Engineering Command, or NAVFAC, to develop marine renewable energy for use at the Navy's facilities worldwide.

The goal is to generate energy from the surrounding water at coastal bases, islands or overseas facilities in order to lower costs and increase reliability of the power supply. Forming a partnership with NAVFAC will allow the UW to develop tools for the Navy to predict and tap energy at its various marine locations.

"We are advancing existing technologies and concepts so they will perform well at naval facilities and help reach their energy targets," said lead investigator Andrew Stewart, an engineer at the UW's Applied Physics Laboratory. He will present information about the project Oct. 25 in Seattle at the Northwest National Marine Renewable Energy Center's annual meeting.

The team has a three-pronged strategy to develop marine energy at naval facilities, which differ from the prime spots now under investigation for commercial marine energy extraction.

In the past three months UW mechanical engineering faculty and graduate students have made 3-D printed prototypes of tidal turbines that they will test in the UW's water channel and with computer modeling studies.

Next they will take the most promising designs and build larger-scale models, about 3 feet across, to test in moving water in 2016. One aim of the project is to develop fast, low-cost ways to evaluate the energy potential at prospective sites.

"We've learned that you can't rely on modeling," Stewart said. "You need in-water verification of marine energy resources."

This project is not focused on one specific design but instead will look at different technologies.

"The idea is to conduct the research that's needed to fill the gap between where the technology is now and where it needs to be for the Navy to take maximum advantage of the currents, tides and waves, as well as wind," Stewart said.

The third aspect of the project is developing low-cost monitoring technology to make environmental monitoring at naval facilities more straightforward.

The team will soon begin to modify the Applied Physics Laboratory's Henderson research vessel to test small-scale marine energy prototypes. The boat, a catamaran barge, was initially built for research on underwater sound. It is well suited for marine energy work because it is stable and allows researchers to lower equipment off the front of the boat, into water undisturbed by the boat's wake.

"It's a pretty big opportunity for us to work on the optimization problems associated with getting these to work in lower-energy environments," said collaborator Brian Polagye, a UW assistant professor of mechanical engineering. He is leading the development of the 3-D prototypes and the environmental monitoring technology.

Jim Thomson, an oceanographer at the Applied Physics Laboratory and associate professor in civil and environmental engineering, is developing wave power devices and low-cost technology to measure the amount of potential wave and tidal energy at various sites.

"Really what we're trying to do is develop a new sector of the maritime industry," Stewart said.
-end-
For more information, contact Stewart at 206-221-8015 or andy@apl.washington.edu, Polagye at 206-543-7544 or bpolagye@uw.edu and Thomson at 206-616-0858 or jthomson@apl.washington.edu.

University of Washington

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.