Nav: Home

New maps show where to generate solar energy in South Carolina

October 24, 2016

South Carolina has more than enough land suitable to generate the large amounts of solar power that would be needed to meet goals calling for all energy to come from renewable sources by 2050, according to new research at Clemson University.

Industrial engineering major Amanda Farthing led the study, working on it for two years as an undergraduate research project.

Farthing and the team at the university's Center for Geospatial Technologies created maps showing which lands in South Carolina would be most suitable for generating solar energy at utility scale. One map shows lands suitable for five-megawatt developments, and one map shows lands for one-megawatt developments.

"The big takeaway is that solar presents a great opportunity in South Carolina and that it can be developed in a way that considers both environmental and social preferences," Farthing said.

The research could help South Carolina continue its explosive growth in generating solar energy, while minimizing conflicts that could arise over land use. Installed solar capacity in the state grew 303 percent in the past year, according to the Solar Energy Industries Association.

Suitable lands for one- and five-megawatt developments are peppered across the state, but the highest concentration is in a swath that runs from the North Carolina state line around Marlboro, Dillon and Horry counties to the Lake Marion area.

"From this initial study, we've seen there are plenty of suitable land areas for the development of solar energy," co-author Michael Carbajales-Dale said. "Regardless of policy, it's very physically feasible."

The research was published by the journal BioPhysical Economics and Resource Quality. It applies to utility-scale solar power only, Farthing said.

Farthing focused on South Carolina for her map study, but the model the team created could do the same analysis for other states, she said.

The Clemson team ranked South Carolina's lands on a scale from 0-100, with the higher numbers more suitable for development. The available solar resource was calculated for lands with values of at least 50, 70 and 90.

Farthing and her team found that about 1,256 square miles, or 4.2 percent of state land area, had a suitability value of at least 70 for five-megawatt developments.

For one-megawatt developments, about 2,340 square miles had suitability value of at least 70. That's slightly smaller than the size of Delaware and would be enough to install 69.6 gigawatts of capacity, researchers found.

It would be enough to power more than 7 million homes and would far exceed the 6.7 gigawatts that Stanford University researchers suggested the state generate in solar energy. Researchers in the Stanford study, which was separate from the Clemson research, provided roadmaps for all 50 states to convert energy systems to 100 percent wind, water and sunlight by 2050.

In the Clemson research, lands had to be about 44.5 acres for five-megawatt developments and about 8.9 acres for one-megawatt developments.

The team eliminated unsuitable lands, including urban areas, airports, national forests, parks, national wildlife refuges, wilderness areas, and protected marine environments.

Researchers also considered slope and aspect. The best place to install the photovoltaic panels that soak up the sun's rays are in flat areas, Farthing said. When there is a slope, it should face south to get the most exposure to the sun, she said.

The Pee Dee and inland areas of the Lowcountry came out as the best places in the state for utility-scale solar generation.

A diagonal swath also runs from the southern Upstate and northern Midlands at the Georgia border northeast to the North Carolina border around Spartanburg, Cherokee and York counties.

The least suitable lands were along the coast.

"Wetlands have a lot of environmental benefits, and the wet ground is not a good place to install photovoltaic panels," Farthing said.

Farthing, a senior who is from Indialantic, Florida, did her work in part to meet the "hands-on project or research experience" component of the Grand Challenges Scholars Program. The program is tailored to create students ready to meet the 21st century grand challenges identified by the National Academy of Engineering.

Carbajales-Dale said it's unique for students to have research published as undergraduates.

"Amanda came to me in her second year and said, 'I want to work on a project, and I want to make it specific to South Carolina. I want to use my skills to benefit people here,'" he said. "Ever since we've been working together, she has performed amazingly, even with all her other commitments."
-end-
Co-authors on the study were Michael Carbajales-Dale, an assistant professor of environmental engineering and Earth sciences; Scott Mason, the Fluor Endowed Chair in Supply Chain Optimization and Logistics; Patricia Carbajales-Dale, co-director of Clemson's Center for Geospatial Technologies; and Palak Matta, the center's GIS manager.

The title of the paper is, "Utility-Scale Solar PV in South Carolina: Analysis of Suitable Lands and Geographical Potential."

For more on solar energy's potential, go to: http://www.seia.org/policy/solar-technology/photovoltaic-solar-electric/whats-megawatt

Clemson University

Related Solar Energy Articles:

Physicists develop approach to increase performance of solar energy
Experimental condensed matter physicists in the Department of Physics at the University of Oklahoma have developed an approach to circumvent a major loss process that currently limits the efficiency of commercial solar cells.
Lasers etch a 'perfect' solar energy absorber
In Light: Science and Applications, University of Rochester researchers demonstrate how laser etching of metallic surfaces creates the ''perfect solar energy absorber.'' This not only enhances energy absorption from sunlight, but also reduces heat dissipation at other wavelengths.
Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.
New hybrid device can both capture and store solar energy
Researchers have reported a new device that can both efficiently capture solar energy and store it until it is needed, offering promise for applications ranging from power generation to distillation and desalination.
Materials that can revolutionize how light is harnessed for solar energy
Columbia scientists designed organic molecules capable of generating two excitons per photon of light, a process called singlet fission.
Solar energy becomes biofuel without solar cells
Soon we will be able to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water.
20 overlooked benefits of distributed solar energy
A study released today provides the most complete list yet of the advantages of solar energy -- from carbon sequestration to improvements for pollinator habitat.
Window film could even out the indoor temperature using solar energy
A window film with a specially designed molecule could be capable of taking the edge off the worst midday heat and instead distributing it evenly from morning to evening.
Danish researchers create worldwide solar energy model
For any future sustainable energy system, it is crucial to know the performance of photovoltaic (solar cell) systems at local, regional and global levels.
Novel thermoelectric nanoantenna design for use in solar energy harvesting
In an article published in the SPIE Journal of Nanophotonics (JNP), researchers from a collaboration of three labs in Mexico demonstrate an innovative nanodevice for harvesting solar energy.
More Solar Energy News and Solar Energy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.