Nav: Home

New materials with photonic crystals that filter radiation are designed

October 24, 2016

The samples designed and the results obtained are opening up a means for developing the right technique to obtain materials of this type in the future, although the outcome of the tests, which were carried out using low-cost, traditional techniques, was not what had been expected. This has been recorded in the PhD thesis by Paola Morales entitled "Efectos de filtrado por recubrimiento de cristal fotónico" (Effects of filtering using photonic crystal coating) read at the NUP/UPNA.

Photonic crystals are materials with structures that are repeated within the space and which have specific characteristics allowing radiation to be filtered in a different way, among other properties. Materials of this type exist naturally as in the wing structure of Morpho menelaus butterflies, on the skin of chameleons or in precious stones, such as opals. "Butterflies have a structure that interacts with light. For example, the blue butterfly has no blue pigments but adopts this colour whenever its structure interacts with the light," pointed out Dr Morales.

The research carried out by the physicist Paola Morales was based on the use of spheres to create a photonic crystal coating with a filtering effect. The first part of her thesis focussed on the analysis of the behaviour of the spheres when faced with variations such as the distance between them, the order, the shape and the material of the spheres. "I used marbles and decorative gemstones with a diameter of a few centimetres to take the place of spheres and spheroids, respectively, with radiation of a "large size": microwaves. These tests were compared with models carried out on computer and the coincidence was found to be very good. This, added to the fact that despite the size the behaviour of the structure when dealing with radiation is the same, in other words, it can be applied to nanometres and to metres, or what boils down to the same thing, to light as well as to sound waves, and this has enabled us to design filters for radiation of a "low size": visible infrared," pointed out the researcher.

Low-cost manufacturing processes

The second part of the thesis consisted of trying to manufacture the materials and create a monolayer of spheres that would filter visible and infrared radiation. To cut costs, the researcher used spheres of three different types of materials, including titanium dioxide, an economic material that has high dielectric permittivity. "It is the material that for example is a component of chewing gum and even toothpaste and it is cost-effective, but the problem it has is that when the spheres are small, they get stuck to each other. What we are proposing, unlike the ones that have been done so far using dielectric spheres without any gaps between them, was to create a coating using spheres with gaps. However, we did not manage to disperse them".

The materials obtained were however useful in verifying the filtering effect, but the researcher acknowledges that they did not obtain the desired decompressed monolayers, either. "Our plan was to design a colourless monolayer with total visibility, and a filtering effect. In most cases current coatings tend to be made up of various layers. In sunglasses, for example, a fairly thick pigmented film is applied to achieve filtering. If we were to apply a monolayer, we would need a much smaller quantity of material but the effect would be the same".

Although the results of the manufacturing cannot be regarded as highly successful, the study of the tests and the detailed characterisation of the samples obtained are opening up the door to future development of a suitable technique to obtain materials of this type.

Elhuyar Fundazioa

Related Radiation Articles:

Cloudy with a chance of radiation: NASA studies simulated radiation
NASA's Human Research Program (HRP) is simulating space radiation on Earth following upgrades to the NASA Space Radiation Laboratory (NSRL) at the US Department of Energy's Brookhaven National Laboratory.
Visualizing nuclear radiation
Extraordinary decontamination efforts are underway in areas affected by the 2011 nuclear accidents in Japan.
Measuring radiation damage on the fly
Researchers at MIT and elsewhere have found a new way to measure radiation damage in materials, quickly, cheaply and continuously, using transient grating spectroscopy.
Radiation that knocks electrons out and down, one after another
Researchers at Japan's Tohoku University are investigating novel ways by which electrons are knocked out of matter.
Novel advancements in radiation tolerance of HEMTs
When it comes to putting technology in space, size and mass are prime considerations.
Radiation-guided nanoparticles zero in on metastatic cancer
Zap a tumor with radiation to trigger expression of a molecule, then attack that molecule with a drug-loaded nanoparticle.
Graphene is both transparent and opaque to radiation
A microchip that filters out unwanted radiation with the help of graphene has been developed by scientists from the EPFL and tested by researchers of the University of Geneva (UNIGE).
Radiation causes blindness in wild animals in Chernobyl
This year marks 30 years since the Chernobyl nuclear accident.
No proof that radiation from X rays and CT scans causes cancer
The widespread belief that radiation from X rays, CT scans and other medical imaging can cause cancer is based on an unproven, decades-old theoretical model, according to a study published in the American Journal of Clinical Oncology.
Some radiation okay for expectant mother and fetus
During pregnancy, approximately 5 to 8 percent of women sustain traumatic injuries, including fractures and muscle tears.

Related Radiation Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".