Nav: Home

3-D-printed organ-on-a-chip with integrated sensors

October 24, 2016

Harvard University researchers have made the first entirely 3D-printed organ-on-a-chip with integrated sensing. Built by a fully automated, digital manufacturing procedure, the 3D-printed heart-on-a-chip can be quickly fabricated in customized form factors allowing researchers to easily collect reliable data for short-term and long-term studies.

This new approach to manufacturing may one day allow researchers to rapidly design organs-on-chips, also known as microphysiological systems, that match the properties of a specific disease or even an individual patient's cells.

The research is published in Nature Materials.

"This new programmable approach to building organs-on-chips not only allows us to easily change and customize the design of the system by integrating sensing but also drastically simplifies data acquisition," said Johan Ulrik Lind, first author of the paper and postdoctoral fellow at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). Lind is also a researcher at the Wyss Institute for Biologically Inspired Engineering at Harvard University.

"Our microfabrication approach opens new avenues for in vitro tissue engineering, toxicology and drug screening research," said Kit Parker, Tarr Family Professor of Bioengineering and Applied Physics at SEAS, who coauthored the study. Parker is also a Core Faculty Member of the Wyss Institute.

Organs-on-chips mimic the structure and function of native tissue and have emerged as a promising alternative to traditional animal testing. Harvard researchers have developed microphysiological systems that mimic the microarchitecture and functions of lungs, hearts, tongues and intestines.

However, the fabrication and data collection process for organs-on-chips is expensive and laborious. Currently, these devices are built in clean rooms using a complex, multi-step lithographic process and collecting data requires microscopy or high-speed cameras.

"Our approach was to address these two challenges simultaneously via digital manufacturing," said Travis Busbee, coauthor of the paper and graduate student in the Lewis Lab. "By developing new printable inks for multi-material 3D printing, we were able to automate the fabrication process while increasing the complexity of the devices."

The researchers developed six different inks that integrated soft strain sensors within the micro-architecture of the tissue. In a single, continuous procedure, the team 3D printed those materials into a cardiac microphysiological device -- a heart on a chip -- with integrated sensors.

"We are pushing the boundaries of three-dimensional printing by developing and integrating multiple functional materials within printed devices," said Jennifer Lewis, Hansjorg Wyss Professor of Biologically Inspired Engineering, and coauthor of the study. "This study is a powerful demonstration of how our platform can be used to create fully functional, instrumented chips for drug screening and disease modeling."

Lewis is also a Core Faculty Member of the Wyss Institute.

The chip contains multiple wells, each with separate tissues and integrated sensors, allowing researchers to study many engineered cardiac tissues at once. To demonstrate the efficacy of the device, the team performed drug studies and longer-term studies of gradual changes in the contractile stress of engineered cardiac tissues, which can occur over the course of several weeks.

"Researchers are often left working in the dark when it comes to gradual changes that occur during cardiac tissue development and maturation because there has been a lack of easy, non-invasive ways to measure the tissue functional performance," said Lind. "These integrated sensors allow researchers to continuously collect data while tissues mature and improve their contractility. Similarly, they will enable studies of gradual effects of chronic exposure to toxins."

"Translating microphysiological devices into truly valuable platforms for studying human health and disease requires that we address both data acquisition and manufacturing of our devices," said Parker. "This work offers new potential solutions to both of these central challenges."
-end-
This work was supported by the National Science Foundation, the National Center for Advancing Translational Sciences of the National Institutes of Health, the US Army Research Laboratory and the US Army Research, and the Harvard University Materials Research Science and Engineering Center (MRSEC).

Harvard John A. Paulson School of Engineering and Applied Sciences

Related Engineering Articles:

Engineering a new cancer detection tool
E. coli may have potentially harmful effects but scientists in Australia have discovered this bacterium produces a toxin which binds to an unusual sugar that is part of carbohydrate structures present on cells not usually produced by healthy cells.
Engineering heart valves for the many
The Wyss Institute for Biologically Inspired Engineering and the University of Zurich announced today a cross-institutional team effort to generate a functional heart valve replacement with the capacity for repair, regeneration, and growth.
Geosciences-inspired engineering
The Mackenzie Dike Swarm and the roughly 120 other known giant dike swarms located across the planet may also provide useful information about efficient extraction of oil and natural gas in today's modern world.
Engineering success
Academically strong, low-income would-be engineers get the boost they need to complete their undergraduate degrees.
HKU Engineering Professor Ron Hui named a Fellow by the UK Royal Academy of Engineering
Professor Ron Hui, Chair Professor of Power Electronics and Philip Wong Wilson Wong Professor of Electrical Engineering at the University of Hong Kong, has been named a Fellow by the Royal Academy of Engineering, UK, one of the most prestigious national academies.
Engineering a better biofuel
The often-maligned E. coli bacteria has powerhouse potential: in the lab, it has the ability to crank out fuels, pharmaceuticals and other useful products at a rapid rate.
Pascali honored for contributions to engineering education
Raresh Pascali, instructional associate professor in the Mechanical Engineering Technology Program at the University of Houston, has been named the 2016 recipient of the Ross Kastor Educator Award.
Scaling up tissue engineering
A team at the Wyss Institute for Biologically Inspired Engineering at Harvard University and the Harvard John A.
Engineering material magic
University of Utah engineers have discovered a new kind of 2-D semiconducting material for electronics that opens the door for much speedier computers and smartphones that also consume a lot less power.
Engineering academic elected a Fellow of the IEEE
A University of Bristol academic has been elected a Fellow of the world's largest and most prestigious professional association for the advancement of technology.

Related Engineering Reading:

Engineering: An Illustrated History from Ancient Craft to Modern Technology (Ponderables 100 Achievements That Changed History Who Did What When)
by Tom Jackson (Editor) (Author), Tom Jackson (Editor)

From ancient aqueducts to soaring skyscrapers, explore engineering milestones over the centuries.


Combining engaging text with captivating images and helpful diagrams, renowned science writer Tom Jackson guides readers through the history of Engineering in the 7th installment of the groundbreaking PonderablesTM series.


Engineering is all around us. From our bridges, tunnels and skyscrapers, to our cars, computers and smartphones, engineering shapes our world and influences just about everything we see and do. And it s been that way for longer than you might think.... View Details


Basic Machines and How They Work
by Naval Education And Training Program (Author)

This revised edition of an extremely clear Navy training manual leaves nothing to be desired in its presentation. Thorough in its coverage of basic theory, from the lever and inclined plane to internal combustion engines and power trains, it requires nothing more than an understanding of the most elementary mathematics.
Beginning with the simplest of machines — the lever — the text proceeds to discussions of the block and tackle (pulleys and hoists), wheel and axle, the inclined plane and the wedge, the screw, and different types of gears (simple, spur, bevel, herringbone, spiral,... View Details


The Book of Massively Epic Engineering Disasters: 33 Thrilling Experiments Based on History's Greatest Blunders (Irresponsible Science)
by Sean Connolly (Author)

It’s hands-on science with a capital “E”—for engineering.

Beginning with the toppling of the Colossus of Rhodes, one of the seven wonders of the ancient world, to the destructive, laserlike sunbeams bouncing off London’s infamous “Fryscraper” in 2013, here is an illustrated tour of the greatest engineering disasters in history, from the bestselling author of The Book of Totally Irresponsible Science.

Each engineering disaster includes a simple, exciting experiment or two using everyday household items to explain the underlying science and put... View Details


The Beginner's Guide to Engineering: Mechanical Engineering
by Mark Huber (Author)

The Beginner’s Guide to Engineering series is designed to provide a very simple, non-technical introduction to the fields of engineering for people with no experience in the fields. Each book in the series focuses on introducing the reader to the various concepts in the fields of engineering conceptually rather than mathematically. These books are a great resource for high school students that are considering majoring in one of the engineering fields, or for anyone else that is curious about engineering but has no background in the field. Books in the series: 1. The Beginner’s Guide to... View Details


The Engineering Book: From the Catapult to the Curiosity Rover, 250 Milestones in the History of Engineering (Sterling Milestones)
by Marshall Brain (Author)

Engineering is where human knowledge meets real-world problems—and solves them. It's the source of some of our greatest inventions, from the catapult to the jet engine. Marshall Brain, creator of the How Stuff Works series and a professor at the Engineering Entrepreneurs Program at NCSU, provides a detailed look at 250 milestones in the discipline. He covers the various areas, including chemical, aerospace, and computer engineering, from ancient history to the present. The topics include architectural wonders like the Acropolis, the Great Wall of China, and the Eiffel Tower; transportation... View Details


101 Things I Learned in Engineering School
by John Kuprenas (Author), Matthew Frederick (Collaborator)

In this unique primer, an experienced civil engineer and instructor presents the physics and fundamentals that underlie the many fields of engineering. Far from a dry, nuts-and-bolts exposition, however, 101 THINGS I LEARNED® IN ENGINEERING SCHOOL probes real-world examples to show how the engineer's way of thinking can-and sometimes cannot-inform our understanding of how things work. Questions from the simple to the profound are illuminated throughout: Why shouldn't soldiers march across a bridge? Why do buildings want to float and cars want to fly? What is the difference between thinking... View Details


Studying Engineering: A Road Map to a Rewarding Career (Fourth Edition)
by Raymond B. Landis (Author)

About the Book
Since Studying Engineering: A Road Map to a Rewarding Career exploded onto the market in 1995, it has become the best selling Introduction to Engineering textbook of all time. Adopted by over 300 U.S. institutions, and reaching more than 150,000 students, the book has made major inroads into the "sink or swim" paradigm of engineering education. Armed with the book as a powerful tool for "student development," large numbers of engineering programs have implemented Introduction to Engineering courses to improve the academic performance and retention rates of their... View Details


Site Reliability Engineering: How Google Runs Production Systems
by Betsy Beyer (Editor), Chris Jones (Editor), Jennifer Petoff (Editor), Niall Richard Murphy (Editor)

The overwhelming majority of a software system’s lifespan is spent in use, not in design or implementation. So, why does conventional wisdom insist that software engineers focus primarily on the design and development of large-scale computing systems?

In this collection of essays and articles, key members of Google’s Site Reliability Team explain how and why their commitment to the entire lifecycle has enabled the company to successfully build, deploy, monitor, and maintain some of the largest software systems in the world. You’ll learn the principles and practices that enable... View Details


Social Engineering: The Art of Human Hacking
by Christopher Hadnagy (Author), Paul Wilson (Foreword)

The first book to reveal and dissect the technical aspect of many social engineering maneuvers

From elicitation, pretexting, influence and manipulation all aspects of social engineering are picked apart, discussed and explained by using real world examples, personal experience and the science behind them to unraveled the mystery in social engineering.

Kevin Mitnick—one of the most famous social engineers in the world—popularized the term “social engineering.” He explained that it is much easier to trick someone into revealing a password for a system than to exert the... View Details


Inner Engineering: A Yogi's Guide to Joy
by Sadhguru (Author)

NEW YORK TIMES BESTSELLER • Thought leader, visionary, philanthropist, mystic, and yogi Sadhguru presents Western readers with a time-tested path to achieving absolute well-being: the classical science of yoga.

NAMED ONE OF THE TEN BEST BOOKS OF THE YEAR BY SPIRITUALITY & HEALTH

The practice of hatha yoga, as we commonly know it, is but one of eight branches of the body of knowledge that is yoga. In fact, yoga is a sophisticated system of self-empowerment that is capable of harnessing and activating inner energies in such a way that your body and... View Details

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Simple Solutions
Sometimes, the best solutions to complex problems are simple. But simple doesn't always mean easy. This hour, TED speakers describe the innovation and hard work that goes into achieving simplicity. Guests include designer Mileha Soneji, chef Sam Kass, sleep researcher Wendy Troxel, public health advocate Myriam Sidibe, and engineer Amos Winter.
Now Playing: Science for the People

#448 Pavlov (Rebroadcast)
This week, we're learning about the life and work of a groundbreaking physiologist whose work on learning and instinct is familiar worldwide, and almost universally misunderstood. We'll spend the hour with Daniel Todes, Ph.D, Professor of History of Medicine at The Johns Hopkins University, discussing his book "Ivan Pavlov: A Russian Life in Science."