Nav: Home

Maze Runners

October 24, 2016

Working with dot-counting mice running through a virtual-reality maze, scientists from Harvard Medical School have found that in order to navigate space rodent brains rely on a cascade of neural signals that culminate in a single decision that prompts the animal to choose one direction over another.

The results, published Oct. 3 in Nature Neuroscience, paint a picture of spatial information-gathering, processing and decision-making that is more complex than once thought.

The HMS study challenges the traditional, decades-old model, which proposes that making a simple spatial decision is the result of an outright competition between two or more distinct neural pathways, with one signal prevailing to suppress the others.

"This winner-take-all view is elegant but perhaps somewhat oversimplified," said study author Chris Harvey, assistant professor of neurobiology at Harvard Medical School. "Our findings suggest that groups of neurons keep track of all recently encountered visual cues and use this information to inform decisions. There needn't be an actual competition between two or more pathways, at least not in the areas of the brain thought to be involved in decision-making."

In that sense, the researchers added, mouse decision-making resembles the human act of accumulating and weighing all the evidence before making a choice.

The researchers say their findings are an early step on a quest to untangle the mechanisms of human memory formation -- a fundamental neurologic process that remains poorly understood. Unraveling what happens in nerve cells during memory formation can help illuminate critical glitches that occur in short-term memory and lead to impaired decision-making in a range of neuropsychiatric and neurodegenerative disorders.

"Once we unravel the different working patterns and circuits in the brain during memory formation and decision-making, we can begin to look for differences in connectivity patterns that underlie abnormalities," Harvey said. "This can give us a handle on how these processes may be flawed in neurodegenerative conditions and neuropsychiatric disorders."

For the experiments, mice were trained to count up to six dots on either side of a virtual T-shaped maze projected on a screen in front of them. Mice had to choose the direction displaying the greater number of dots and make a turn in that direction.

The task -- exquisitely complex by rodent standards--is akin to how humans use street signs and landmarks to maneuver in space in order to reach a destination. To prepare for the simulated maze challenge, mice were trained over the course of a month or so, learning to count up to six dots and to make a choice to go left or right depending on the number of dots projected on the screen. When an animal made the correct turn, it was rewarded with a few gulps of sweetened water.

For their experiments, the scientists focused on neurons in the posterior parietal cortex -- the part of the brain where visual sensory input and motor action converge. To visualize neuronal activity in real time, researchers injected mice with a virus that induced their brain cells to glow, or fluoresce, anytime an electrical impulse was triggered by something the mouse saw. The approach allowed scientists to map out an "electrical grid" showing the moment-by-moment changes across thousands of neurons as animals encountered cues, retrieved short-term memories and made a decision.

The electrical patterns showed that in order to make the correct choice, the mouse had to rely on short-term memory -- recalling how many dots it saw on one side a few seconds prior -- and then convert this memory into motor action, or the action of turning left or right. Surprisingly, multiple nerve signals converged at once before the mouse made a turn, suggesting that the animals weighed all available cues before making a decision.

The results also showed that brain cells did not pause and reset each time a decision was made. Instead, neurons kept a "ticker tape" record of things that happened in the past -- an-ever expanding catalogue as new experiences were acquired.

The findings suggest that even the simplest of choices, such as turning left or right, are the result of multiple neural signals triggered by recently encountered cues, which then propagate in a complex yet well-organized manner and converge in a single decision. That process, the researchers said, is an elegant illustration of how observing a cue forms a short-term memory, which, in turn, leads to a decision.
-end-
Co-author Ari Morcos, a research fellow in neurobiology at the time of the study, is currently employed by Google DeepMind.

The work was supported by the National Institute of Mental Health grant R01MH107620, by the National Institute of Neurological Disorders and Stroke grant R01NS089521, by a Burroughs-Wellcome Fund Career Award at the Scientific Interface, the Searle Scholars Program, the New York Stem Cell Foundation, the Alfred P. Sloan Research Foundation, a NARSAD Brain and Behavior Research Foundation award, and a Stuart H.Q. and Victoria Quan Fellowship.

Harvard Medical School has more than 9,500 full-time faculty working in 10 academic departments located at the School's Boston campus or in hospital-based clinical departments at 15 Harvard-affiliated teaching hospitals and research institutes: Beth Israel Deaconess Medical Center, Boston Children's Hospital, Brigham and Women's Hospital, Cambridge Health Alliance, Dana-Farber Cancer Institute, Harvard Pilgrim Health Care Institute, Hebrew SeniorLife, Joslin Diabetes Center, Judge Baker Children's Center, Massachusetts Eye and Ear/Schepens Eye Research Institute, Massachusetts General Hospital, McLean Hospital, Mount Auburn Hospital, Spaulding Rehabilitation Network and VA Boston Healthcare System.

Harvard Medical School

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".