Nav: Home

MRSA uses decoys to evade a last-resort antibiotic

October 24, 2016

The superbug MRSA uses decoys to evade a last-resort antibiotic, reveals new research.

The findings, from scientists at Imperial College London, suggest potential new ways of tackling the bacteria, such as interfering with the decoys.

Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for thousands of deaths around the world each year. However, because the bacteria are resistant to many different antibiotics, treatment options are limited, and often ineffective.

One of the few antibiotics that can be used against MRSA is a drug of last resort known as daptomycin. However nearly a third of MRSA infections are not cured by this drug, leaving patients with a poor prognosis.

But until now scientists didn't know how MRSA managed to survive daptomycin treatment.

In the latest findings, published in the journal Nature Microbiology, a team from Imperial discovered that MRSA releases decoy molecules that allow them to escape being killed by the antibiotic.

The decoys are made of the same type of fat that make up the outer layer of MRSA cells. The antibiotic usually latches onto this fat layer, before drilling a hole through the outer shell and killing the bacteria.

However, when MRSA releases these fatty decoy molecules the antibiotic latches onto these instead, and is deactivated.

Dr Andrew Edwards, lead author from the Department of Medicine at Imperial, explained: "These fat molecules act in a similar way to the decoy flares released by fighter planes to avoid a missile. The antibiotic mistakenly targets the decoys, allowing the bacteria to evade destruction. This is the first time this decoy system has been seen in MRSA."

Using bacterial cells in the laboratory and mouse experiments, the scientists discovered that only some MRSA bacteria can use this decoy system. The team believe this is why around 30 per cent of infections are not cured by the antibiotic daptomycin.

In these resistant infections, the MRSA bacteria turn off a communication system they normally use to 'talk' to each other. This communication system allows the bacteria to release toxins that damage human cells. However, this system also seems to interfere with decoy production.

Dr Edwards, who is based at the Medical Research Council's Centre for Molecular Bacteriology and Infection at Imperial, explained: "These MRSA bacteria 'go dark' and stop all communication. It is the switching off of this communication system that allows the decoys to work so effectively."

He added: "Our focus now is on understanding more about how these decoys are made and how they can be shut off completely to help daptomycin work better in patients."

Dr Edwards said that a similar decoy mechanism has been seen in E. coli bacteria.

"Our findings suggest we may have underappreciated the importance of this decoy system, and that it probably exists in many other bacteria."

Further experiments revealed the release of decoys can be partially prevented using a second antibiotic, similar to penicillin, called oxacillin. Although MRSA is resistant to oxacillin, using it alongside daptomycin may allow the latter antibiotic to kill the bug more effectively.

Previous research has suggested penicillin-type antibiotics help daptomycin to kill MRSA - although scientists didn't know why. A clinical trial using the two antibiotics, led by an Australian team, is currently now underway.

Furthermore, tests revealed that a next generation antibiotic, currently in clinical trials, seems to stop production of the fatty decoys.

"This suggests this new antibiotic may also help daptomycin kill MRSA - which could provide another treatment option for patients" added Dr Edwards.

Dr Jonathan Pearce, head of infections and immunity at the Medical Research Council, which supported the work, said: "In the fight against antimicrobial resistance, we are desperately searching for new ways to treat bacterial infections like MRSA as they dangerously start to become resistant to even last resort antibiotics. This study has uncovered a rather cunning tactic that these and possibly other bacteria use to evade current treatment, and armed with this new knowledge, we can begin to develop new and improved treatments to help tackle what is one of the biggest threats to global health."

Professor Melanie Welham, Chief Executive of the Biotechnology and Biological Sciences Research Council, added: "This demonstrates the value of research that explores the frontiers of chemical biology in bacteria. Finding the biological mechanisms behind why antibiotics do and don't work is crucial in the fight against anti-microbial resistance."
-end-
The work was supported by the Medical Research Council, the Biotechnology and Biological Sciences Research Council (BBSRC) and the Wellcome Trust.

Imperial College London

Related Bacteria Articles:

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
A chink in bacteria's armor
Scientists have untangled the structure of a recently discovered bacterial wall-building protein, found in nearly all bacteria.
More Bacteria News and Bacteria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.