Nav: Home

Big data methods under development at UGA will help tackle diseases

October 24, 2016

Athens, Ga. - The University of Georgia's Ping Ma will use a new grant to crunch big data numbers, not uncommon for a statistics professor. What is unusual is that his work may help save lives.

Ma has been awarded $1.3 million in funding from the National Institutes of Health to develop statistical tools to further clarify the causes of many diseases--including cancer, heart disease and aging-related illnesses. Over four years, Ma and his team of researchers will look at something known as small RNAs, hoping to unravel their regulatory role on abnormal variations in genetic transcription.

RNA, or ribonucleic acid, is present in all living cells and is incredibly important in the human body. Small RNA primarily acts as a messenger for DNA and regulates various biological processes.

Ma, a professor in UGA's Franklin College of Arts and Sciences department of statistics and lead investigator on the project, will work to analyze big data sets that contain biomedical information on various diseases and create smart algorithms. His goal is to allow researchers to accurately analyze large sets of data without the need for expensive supercomputers.

"Multiple interconnected research programs for tackling the challenge of big data have been actively pursued by my lab," he said. "An example of exciting progress, achieved through a collaborative project, is our finding that by sampling very small representative sub-data sets using smart algorithms, one can effectively extract almost all of the relevant information contained in the original vast data sets."

Using these statistical methods allows biomedical researchers who may not have direct access to supercomputers to analyze biomedical data accurately and scale outcomes to larger data sets. The results of developing useful statistical methods for analysis, he said, means that biomedical researchers can use their desktop computers, iPads and smartphones to analyze data.

"The advent of new biotechnologies has great potential to view the gene expression at unprecedented detail and clarity, which opens many new doors for studying the mechanisms of alternative splicing of various abnormal splicing related diseases," he said. "Given the huge volumes of data, we believe that this is an opportune time for taking an analytical approach to study small RNAs' regulatory role on alternative splicing."

Recent studies have indicated that over 95 percent of human genes undergo alternative splicing. Aberrant splicing of pre-mRNAs can cause various human diseases.

"Small RNAs regulate alternative splicing," he said, "and enhanced understanding of the regulation of alternative splicing is crucial for finding therapeutic targets and providing better treatment."

Small RNAs, including microRNAs and short interfering RNAs, regulate gene expression through complementary base pairing with target RNAs. Together with their protein partners, small RNAs have been implicated in multiple aspects of gene functions. Very recently, siRNAs have also been implicated in alternative splicing processes in human cells, but the global regulatory role of small non-coding RNA on alternative splicing remains elusive.

Advances in biomedical sciences and technologies in the past decade have created an extraordinary amount of biomedical data that was inaccessible just a decade ago and offers biomedical researchers an unprecedented opportunity to tackle much larger and more complex research challenges. The opportunity has not yet been fully realized because effective and efficient statistical and computing tools for analyzing super-large data sets are still lacking.

"The proposed work will establish a comprehensive statistical framework and computational strategies to investigate the global mechanisms of alternative splicing regulation by small RNAs," he said. "As a byproduct of this effort, we will also be able to provide an efficient, robust, publicly available and user-friendly software for the analysis."
-end-


University of Georgia

Related Big Data Articles:

Discrimination, lack of diversity, & societal risks of data mining highlighted in big data
A special issue of Big Data presents a series of insightful articles that focus on Big Data and Social and Technical Trade-Offs.
'Charliecloud' simplifies Big Data supercomputing
At Los Alamos National Laboratory, home to more than 100 supercomputers since the dawn of the computing era, elegance and simplicity of programming are highly valued but not always achieved.
Advances in bayesian methods for big data
Big Data has imposed great challenges for machine learning. Bayesian methods provide a profound framework for characterizing the intrinsic uncertainty and performing probabilistic inference and decision-making.
Compiling big data in a human-centric way
When a group of researchers in the Undiagnosed Disease Network at Baylor College of Medicine realized they were spending days combing through databases searching for information regarding gene variants, they decided to do something about it.
Story of silver birch from genomic big data
Researchers at University of Helsinki, Finland and University at Buffalo, USA have analyzed the evolutionary history of silver birch using big data from the genomes of 150 birches.
Night lights, big data
Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and the Environmental Defense Fund (EDF) have developed an online tool that incorporates 21 years of night-time lights data to understand and compare changes in human activities in countries around the world.
Big data approach to predict protein structure
Nothing works without proteins in the body, they are the molecular all-rounders in our cells.
Is your big data messy? We're making an app for that
Vizier, software under development by a University at Buffalo-led research team, aims to proactively catch big data errors.
Big data for the universe
Astronomers at Lomonosov Moscow State University in cooperation with their French colleagues and with the help of citizen scientists have released 'The Reference Catalog of galaxy SEDs,' which contains value-added information about 800,000 galaxies.
Using Big Data to understand immune system responses
An enzyme found in many bacteria, including the bacterium that gives us strep throat, has given mankind a cheap and effective tool with which to edit our own genes.

Related Big Data Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...