Nav: Home

A new law to accurately measure charged macromolecules

October 24, 2016

AMHERST, Mass. - For biochemists, measuring the size and diffusion properties of large molecules such as proteins and DNA using dynamic light-scattering techniques and the Stokes-Einstein formula has been mostly straightforward for decades, except for one major snag - it doesn't work when these macromolecules carry an electric charge.

Now polymer theorist Murugappan Muthukumar at the University of Massachusetts Amherst has derived a solution to the 40-year dilemma, proposing a new theory that is allowing polymer chemists, engineers and biochemists for the first time to successfully apply the Stokes-Einstein law governing situations that involve charged macromolecules. Details appear in the current early online edition of Proceedings of the National Academy of Sciences.

As Muthukumar explains, "The ability of molecules to diffuse becomes smaller as the molecule's size gets larger, but for charged molecules, it's not true, diffusion doesn't depend on size. This was very surprising to physicists and biochemists 40 years ago when they were trying to measure charged macromolecules using light scattering. They also found that molecules of the same charge were aggregating, or clumping when they should repel each other. It was very surprising and nobody understood why."

Further, experiments showed that when the repulsion between similarly-charged molecules is made weaker by adding salt to the solution, the clumps went away, he says. "People were mystified by not being able to measure the size of these molecules accurately, and by their unusual behavior."

After a long process of eliminating possible explanations, he now understands what is happening. "It turns out that these molecules are not alone, there are small ions all around them, neutralizing the charges of the macromolecules," Muthukumar says. "These small ions are more agile and control the behavior of the macromolecules."

His paper offers formulae and testable predictions of a new theory or law governing charged macromolecules, DNA, proteins and synthetic poly-electrolytes. Experimental polymer scientists are already testing the new ideas in current investigations.

Muthukumar says this solution took him ten years to work out. "I began by simply believing the experimental facts and accepting that there must be an explanation. I started by taking a walk and asking myself, how could this be?"

As the theorist approached experimentalists with his ideas for solving the conundrum over the years, each had an objection that Muthukumar had to overcome. Finally, he reached the ion solution and heard no protest. "They have to be there," he now says. "The whole system has to be electrically neutral, otherwise you'd have an instability, which does not happen. Now we know how much the small ions are contributing. Using my formula, size of charged macromolecules can now be accurately determined using light scattering."
-end-
Muthukumar, the Wilmer D. Barrett Professor of polymer science and engineering at UMass Amherst, was selected last month to receive the 2017 American Chemical Society's Award in Polymer Chemistry. He has received many other awards including the Polymer Physics Prize of the American Physical Society and the Humboldt Research Award. Colleagues have called him one of the leading polymer theorists in the world today.

University of Massachusetts at Amherst

Related Molecules Articles:

The inner lives of molecules
Researchers from Canada, the UK and Germany have developed a new experimental technique to take 3-D images of molecules in action.
Novel technique helps ID elusive molecules
Stuart Lindsay, a researcher at Arizona State University's Biodesign Institute, has devised a clever means of identifying carbohydrate molecules quickly and accurately.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
A new way to display the 3-D structure of molecules
Berkeley Lab and UC Berkeley Researchers have developed nanoscale display cases that enables new atomic-scale views of hard-to-study chemical and biological samples.
Bending hot molecules
Hot molecules are found in extreme environments such as the edges of fusion reactors.
At attention, molecules!
University of Iowa chemists have learned about a molecular assembly that may help create quicker, more responsive touch screens, among other applications.
Folding molecules into screw-shaped structures
An international research team describes the methods of winding up molecules into screw-shaped structures.
Artificial molecules
A new method allows scientists at ETH Zurich and IBM to fabricate artificial molecules out of different types of microspheres.
Molecules that may keep you young and alive
A new study may have uncovered the fountain of youth: plant extracts containing the six best groups of anti-aging molecules ever seen.
Fun with Lego (molecules)
A great childhood pleasure is playing with Legos® and marveling at the variety of structures you can create from a small number of basic elements.

Related Molecules Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".