Nav: Home

A new law to accurately measure charged macromolecules

October 24, 2016

AMHERST, Mass. - For biochemists, measuring the size and diffusion properties of large molecules such as proteins and DNA using dynamic light-scattering techniques and the Stokes-Einstein formula has been mostly straightforward for decades, except for one major snag - it doesn't work when these macromolecules carry an electric charge.

Now polymer theorist Murugappan Muthukumar at the University of Massachusetts Amherst has derived a solution to the 40-year dilemma, proposing a new theory that is allowing polymer chemists, engineers and biochemists for the first time to successfully apply the Stokes-Einstein law governing situations that involve charged macromolecules. Details appear in the current early online edition of Proceedings of the National Academy of Sciences.

As Muthukumar explains, "The ability of molecules to diffuse becomes smaller as the molecule's size gets larger, but for charged molecules, it's not true, diffusion doesn't depend on size. This was very surprising to physicists and biochemists 40 years ago when they were trying to measure charged macromolecules using light scattering. They also found that molecules of the same charge were aggregating, or clumping when they should repel each other. It was very surprising and nobody understood why."

Further, experiments showed that when the repulsion between similarly-charged molecules is made weaker by adding salt to the solution, the clumps went away, he says. "People were mystified by not being able to measure the size of these molecules accurately, and by their unusual behavior."

After a long process of eliminating possible explanations, he now understands what is happening. "It turns out that these molecules are not alone, there are small ions all around them, neutralizing the charges of the macromolecules," Muthukumar says. "These small ions are more agile and control the behavior of the macromolecules."

His paper offers formulae and testable predictions of a new theory or law governing charged macromolecules, DNA, proteins and synthetic poly-electrolytes. Experimental polymer scientists are already testing the new ideas in current investigations.

Muthukumar says this solution took him ten years to work out. "I began by simply believing the experimental facts and accepting that there must be an explanation. I started by taking a walk and asking myself, how could this be?"

As the theorist approached experimentalists with his ideas for solving the conundrum over the years, each had an objection that Muthukumar had to overcome. Finally, he reached the ion solution and heard no protest. "They have to be there," he now says. "The whole system has to be electrically neutral, otherwise you'd have an instability, which does not happen. Now we know how much the small ions are contributing. Using my formula, size of charged macromolecules can now be accurately determined using light scattering."
-end-
Muthukumar, the Wilmer D. Barrett Professor of polymer science and engineering at UMass Amherst, was selected last month to receive the 2017 American Chemical Society's Award in Polymer Chemistry. He has received many other awards including the Polymer Physics Prize of the American Physical Society and the Humboldt Research Award. Colleagues have called him one of the leading polymer theorists in the world today.

University of Massachusetts at Amherst

Related Molecules Articles:

How molecules self-assemble into superstructures
Most technical functional units are built bit by bit according to a well-designed construction plan.
Breaking down stubborn molecules
Seawater is more than just saltwater. The ocean is a veritable soup of chemicals.
Shaping the rings of molecules
Canadian chemists discover a natural process to control the shape of 'macrocycles,' molecules of large rings of atoms, for use in pharmaceuticals and electronics.
The mysterious movement of water molecules
Water is all around us and essential for life. Nevertheless, research into its behaviour at the atomic level -- above all how it interacts with surfaces -- is thin on the ground.
Spectroscopy: A fine sense for molecules
Scientists at the Laboratory for Attosecond Physics have developed a unique laser technology for the analysis of the molecular composition of biological samples.
Looking at the good vibes of molecules
Label-free dynamic detection of biomolecules is a major challenge in live-cell microscopy.
Colliding molecules and antiparticles
A study by Marcos Barp and Felipe Arretche from Brazil published in EPJ D shows a model of the interaction between positrons and simple molecules that is in good agreement with experimental results.
Discovery of periodic tables for molecules
Scientists at Tokyo Institute of Technology (Tokyo Tech) develop tables similar to the periodic table of elements but for molecules.
New method for imaging biological molecules
Researchers at Karolinska Institutet in Sweden have, together with colleagues from Aalto University in Finland, developed a new method for creating images of molecules in cells or tissue samples.
How two water molecules dance together
Researchers have gained new insights into how water molecules interact.
More Molecules News and Molecules Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.