Nav: Home

The quantum sniffer dog

October 24, 2016

As humans, we sniff out different scents and aromas using chemical receptors in our noses. In technological gas detection, however, there are a whole host of other methods available. One such method is to use infrared lasers, passing a laser beam through the gas to an adjacent separate detector, which measures the degree of light attenuation it causes. TU Wien's tiny new sensor now brings together both sides within a single component, making it possible to use the same microscopic structure for both the emission and detection of infrared radiation.

Circular quantum cascade lasers

"The lasers that we produce are a far cry from ordinary laser pointers ," explains Rolf Szedlak from the Institute of Solid State Electronics at TU Wien. "We make what are known as quantum cascade lasers. They are made up of a sophisticated layered system of different materials and emit light in the infrared range."

When an electrical voltage is applied to this layered system, electrons pass through the laser. With the right selection of materials and layer thicknesses, the electrons always lose some of their energy when passing from one layer into the next. This energy is released in the form of light, creating an infrared laser beam.

"Our quantum cascade lasers are circular, with a diameter of less than half a millimetre," reports Prof. Gottfried Strasser, head of the Center for Micro- and Nanostructures at TU Wien. "Their geometric properties help to ensure that the laser only emits light at a very specific wavelength."

"This is perfect for chemical analysis of gases, as many gases absorb only very specific amounts of infrared light," explains Prof. Bernhard Lendl from the Institute of Chemical Technologies and Analytics at TU Wien. Gases can thus be reliably detected using their own individual infrared 'fingerprint'. Doing so requires a laser with the correct wavelength and a detector that measures the amount of infrared radiation swallowed up by the gas.

A laser that also detects

"Our microscopic structure has the major advantage of being a laser and detector in one," professes Rolf Szedlak. Two concentric quantum cascade rings are fitted for this purpose, which can both (depending on the operating mode) emit and detect light, even doing so at two slightly different wavelengths. One ring emits the laser light which passes through the gas before being reflected back by a mirror. The second ring then receives the reflected light and measures its strength. The two rings then immediately switch their roles, allowing the next measurement to be carried out.

In testing this new form of sensor, the TU Wien research team faced a truly daunting challenge: they had to differentiate isobutene and isobutane - two molecules which, in addition to confusingly similar names, also possess very similar chemical properties. The microscopic sensors passed this test with flying colours, reliably identifying both of the gases.

"Combining laser and detector brings many advantages," says Gottfried Strasser. "It allows for the production of extremely compact sensors, and conceivably, even an entire array - i.e. a cluster of microsensors - housed on a single chip and able to operate on several different wavelengths simultaneously." The application possibilities are virtually endless, ranging from environmental technology to medicine.
-end-


Further information:


Rolf Szedlak, MSc
Institute of Solid State Electronics
TU Wien
Floragasse 7, 1040 Vienna
T: +43-1-58801-36229
rolf.szedlak@tuwien.ac.at

Vienna University of Technology

Related Electrons Articles:

Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
New method for detecting quantum states of electrons
Researchers in the Quantum Dynamics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) devised a new method -- called image charge detection -- to detect electrons' transitions to quantum states.
Slow electrons to combat cancer
Slow electons can be used to destroy cancer cells - but how exactly this happens has not been well understood.
How light steers electrons in metals
Researchers in the Department of Physics of ETH Zurich have measured how electrons in so-called transition metals get redistributed within a fraction of an optical oscillation cycle.
Twisting whirlpools of electrons
Using a novel approach, EPFL physicists have been able to create ultrafast electron vortex beams, with significant implications for fundamental physics, quantum computing, future data-storage and even certain medical treatments.
More Electrons News and Electrons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...