Raton Basin earthquakes linked to oil and gas fluid injections

October 24, 2017

Oct. 24, 2017 -- A rash of earthquakes in southern Colorado and northern New Mexico recorded between 2008 and 2010 was likely due to fluids pumped deep underground during oil and gas wastewater disposal, says a new University of Colorado Boulder study.

The study, which took place in the 2,200-square-mile Raton Basin along the central Colorado-northern New Mexico border, found more than 1,800 earthquakes up to magnitude 4.3 during that period, linking most to wastewater injection well activity. Such wells are used to pump water back in the ground after it has been extracted during the collection of methane gas from subterranean coal beds.

One key piece of the new study was the use of hydrogeological modeling of pore pressure in what is called the "basement rock" of the Raton Basin - rock several miles deep that underlies the oldest stratified layers. Pore pressure is the fluid pressure within rock fractures and rock pores.

While two previous studies have linked earthquakes in the Raton Basin to wastewater injection wells, this is the first to show that elevated pore pressures deep underground are well above earthquake-triggering thresholds, said CU Boulder doctoral student Jenny Nakai, lead study author. The northern edges of the Raton Basin border Trinidad, Colorado, and Raton, New Mexico.

"We have shown for the first time a plausible causative mechanism for these earthquakes," said Nakai of the Department of Geological Sciences. "The spatial patterns of seismicity we observed are reflected in the distribution of wastewater injection and our modeled pore pressure change."

A paper on the study was published in the Journal of Geophysical Research: Solid Earth. Co-authors on the study include CU Boulder Professors Anne Sheehan and Shemin Ge of geological sciences, former CU Boulder doctoral student Matthew Weingarten, now a postdoctoral fellow at Stanford University, and Professor Susan Bilek of the New Mexico Institute of Mining and Technology in Socorro.

The Raton Basin earthquakes between 2008 and 2010 were measured by the seismometers from the EarthScope USArray Transportable Array, a program funded by the National Science Foundation (NSF) to measure earthquakes and map Earth's interior across the country. The team also used seismic data from the Colorado Rockies Experiment and Seismic Transects (CREST), also funded by NSF.

As part of the research, the team simulated in 3-D a 12-mile long fault gleaned from seismicity data in the Vermejo Park region in the Raton Basin. The seismicity patterns also suggest a second, smaller fault in the Raton Basin that was active from 2008-2010.

Nakai said the research team did not look at the relationship between the Raton Basin earthquakes and hydraulic fracturing, or fracking.

The new study also showed the number of earthquakes in the Raton Basin correlates with the cumulative volume of wastewater injected in wells up to about 9 miles away from the individual earthquakes. There are 28 "Class II" wastewater disposal wells - wells that are used to dispose of waste fluids associated with oil and natural gas production - in the Raton Basin, and at least 200 million barrels of wastewater have been injected underground there by the oil and gas industry since 1994.

"Basement rock is typically more brittle and fractured than the rock layers above it," said Sheehan, also a fellow at CU's Cooperative Institute for Research in Environmental Sciences. "When pore pressure increases in basement rock, it can cause earthquakes."

There is still a lot to learn about the Raton Basin earthquakes, said the CU Boulder researchers. While the oil and gas industry has monitored seismic activity with seismometers in the Raton Basin for years and mapped some sub-surface faults, such data are not made available to researchers or the public.

The earthquake patterns in the Raton Basin are similar to other U.S. regions that have shown "induced seismicity" likely caused by wastewater injection wells, said Nakai. Previous studies involving CU Boulder showed that injection wells likely caused earthquakes near Greeley, Colorado, in Oklahoma and in the mid-continent region of the United States in recent years.
-end-
For more information contact Jim Scott in CU Boulder media relations at jim.scott@colorado.edu or 303-492-3114.

University of Colorado at Boulder

Related Earthquakes Articles from Brightsurf:

AI detects hidden earthquakes
Tiny movements in Earth's outermost layer may provide a Rosetta Stone for deciphering the physics and warning signs of big quakes.

Undersea earthquakes shake up climate science
Sound generated by seismic events on the seabed can be used to determine the temperature of Earth's warming oceans.

New discovery could highlight areas where earthquakes are less likely to occur
Scientists from Cardiff University have discovered specific conditions that occur along the ocean floor where two tectonic plates are more likely to slowly creep past one another as opposed to drastically slipping and creating catastrophic earthquakes.

Does accelerated subduction precede great earthquakes?
A strange reversal of ground motion preceded two of the largest earthquakes in history.

Scientists get first look at cause of 'slow motion' earthquakes
An international team of scientists has for the first time identified the conditions deep below the Earth's surface that lead to the triggering of so-called 'slow motion' earthquakes.

Separations between earthquakes reveal clear patterns
So far, few studies have explored how the similarity between inter-earthquake times and distances is related to their separation from initial events.

How earthquakes deform gravity
Researchers at the German Research Centre for Geosciences GFZ in Potsdam have developed an algorithm that for the first time can describe a gravitational signal caused by earthquakes with high accuracy.

Bridge protection in catastrophic earthquakes
Bridges are the most vulnerable parts of a transport network when earthquakes occur, obstructing emergency response, search and rescue missions and aid delivery, increasing potential fatalities.

Earthquakes, chickens, and bugs, oh my!
Computer scientists at the University of California, Riverside have developed two algorithms that will improve earthquake monitoring and help farmers protect their crops from dangerous insects, or monitor the health of chickens and other animals.

Can a UNICORN outrun earthquakes?
A University of Tokyo Team transformed its UNICORN computing code into an AI-like algorithm to more quickly simulate tectonic plate deformation due to a phenomenon called a ''fault slip,'' a sudden shift that occurs at the plate boundary.

Read More: Earthquakes News and Earthquakes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.