Fireworks in space

October 24, 2017

NASA's Twins Study preliminary results have revealed that space travel causes an increase in methylation, the process of turning genes on and off, and additional knowledge in how that process works.

"Some of the most exciting things that we've seen from looking at gene expression in space is that we really see an explosion, like fireworks taking off, as soon as the human body gets into space," Twins Study Principal Investigator Chris Mason, Ph.D., of Weill Cornell Medicine, said. "With this study, we've seen thousands and thousands of genes change how they are turned on and turned off. This happens as soon as an astronaut gets into space, and some of the activity persists temporarily upon return to Earth."

When retired twin astronaut Scott Kelly returned to Earth in March 2016, the Twins Study research intensified with investigators collecting samples from him and his twin brother, retired astronaut Mark Kelly. The researchers began combining the data and reviewing the enormous amount of information looking for correlations.

"This study represents one of the most comprehensive views of human biology," Mason said. "It really sets the bedrock for understanding molecular risks for space travel as well as ways to potentially protect and fix those genetic changes."

Final results for the Twins Study are expected to be published in 2018.
-end-
NASA's Human Research Program (HRP) is dedicated to discovering the best methods and technologies to support safe, productive human space travel. HRP enables space exploration by reducing the risks to astronaut health and performance using ground research facilities, the International Space Station, and analog environments. This leads to the development and delivery of a program focused on: human health, performance, and habitability standards; countermeasures and risk mitigation solutions; and advanced habitability and medical support technologies. HRP supports innovative, scientific human research by funding more than 300 research grants to respected universities, hospitals and NASA centers to over 200 researchers in more than 30 states.

NASA/Johnson Space Center

Related Gene Articles from Brightsurf:

Alzheimer's risk gene disrupts endocytosis, but another disease-linked gene could help
MIT researchers find that astrocytes with the risk-increasing APOE4 variant show deficits of key cellular function called endocytosis, but overexpressing another Alzheimer's associated gene, PICALM, overcame the defect

New Human Gene Therapy editorial: Concern following gene therapy adverse events
Response to the recent report of the deaths of two children receiving high doses of a gene therapy vector (AAV8) in a Phase I trial for X-linked myotubular myopathy (MTM).

Gene therapy/gene editing combo could offer hope for some genetic disorders
A hybrid approach that combines elements of gene therapy with gene editing converted an experimental model of a rare genetic disease into a milder form, significantly enhancing survival, shows a multi-institutional study led by the University of Pennsylvania and Children's National Hospital in Washington, D.C.

Unraveling gene expression
EPFL chemists have uncovered the first steps in the process of gene expression by showing how the protein Rap1 pries open the tightly wound, compacted structure of DNA in the cell to gain access to specific genes.

Gene coding error found in rare, inherited gene cof lung-scarring disorder linked to short telomeres
By combing through the entire genetic sequences of a person with a lung scarring disease and 13 of the person's relatives, Johns Hopkins Medicine researchers say they have found a coding error in a single gene that is likely responsible for a rare form of the disease and the abnormally short protective DNA caps on chromosomes long associated with it.

The two faces of the Jekyll gene
Genes which are specific to a species or group of species can reflect important genetic changes within lineages.

Gene therapy vectors carrying the telomerase gene do not increase the risk of cancer
Researchers from the Spanish National Cancer Research Centre (CNIO) have shown in a new study that the gene therapy with telomerase that they have developed, and which has proven to be effective in mice against diseases caused by excessive telomere shortening and ageing, does not cause cancer or increase the risk of developing it, even in a cancer-prone setting.

Blindness gene discovered
Researchers from UNIGE have investigated a recessive genetic disorder that destroys the eyes from developing and results in childhood blindness.

Gene editing just got easier
An international team of researchers has made CRISPR technology more accessible and standardized by simplifying its complex implementation in a way that offers a broad platform for off-the shelf genome engineering.

Gene regulation: Risk-free gene reactivation
Chemical modification of DNA subunits contribute to the regulation of gene expression.

Read More: Gene News and Gene Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.