Helping blood cells regenerate after radiation therapy

October 24, 2018

CAMBRIDGE, MA - Patients with blood cancers such as leukemia and lymphoma are often treated by irradiating their bone marrow to destroy the diseased cells. After the treatment, patients are vulnerable to infection and fatigue until new blood cells grow back.

MIT researchers have now devised a way to help blood cells regenerate faster. Their method involves stimulating a particular type of stem cell to secrete growth factors that help precursor cells differentiate into mature blood cells.

Using a technique known as mechanopriming, the researchers grew mesenchymal stem cells (MSCs) on a surface whose mechanical properties are very similar to that of bone marrow. This induced the cells to produce special factors that help hematopoietic stem and progenitor cells (HSPCs) differentiate into red and white blood cells, as well as platelets and other blood cells.

"You can think about it like you're trying to grow a plant," says Krystyn Van Vliet, the Michael and Sonja Koerner Professor of Materials Science and Engineering, a professor of biological engineering, and associate provost. "The MSCs are coming in and improving the soil so that the progenitor cells can start proliferating and differentiating into the blood cell lineages that you need to survive."

In a study of mice, the researchers showed that the specially grown MSCs helped the animals to recover much more quickly from bone marrow irradiation.

Van Vliet is the senior author of the study, which appears in the October 24 issue of the journal Stem Cell Research and Therapy. The paper's lead author is recent MIT PhD recipient Frances Liu. Other authors are Singapore-MIT Alliance for Research and Technology (SMART) postdoc Kimberley Tam, recent MIT PhD recipient Novalia Pishesha, and former SMART postdoc Zhiyong Poon, now at Singapore General Hospital.

Cellular drug factories

MSCs are produced throughout the body and can differentiate into a variety of tissues, including bone, cartilage, muscle, and fat. They can also secrete proteins that help other types of stem cells differentiate into mature cells.

"They act like drug factories," Van Vliet says. "They can become tissue lineage cells, but they also pump out a lot of factors that change the environment that the hematopoietic stem cells are operating in."

When cancer patients receive a stem cell transplant, they usually receive only HPSCs, which can become blood cells. Van Vliet's team has shown previously that when mice are also given MSCs, they recover faster. However, in a given population of MSCs, usually only about 20 percent produce the factors that are needed to stimulate blood cell growth and bone marrow recovery.

"Left to their own devices in the current state-of-the-art culture environments, MSCs become heterogeneous and they all express a variety of factors," Van Vliet says.

In an earlier study, Van Vliet and her SMART colleagues showed that she could sort MSCs with a special microfluidic device that can identify the 20 percent that promote blood cell growth. However, she and her students wanted to improve on that by finding a way to stimulate an entire population of MSCs to produce the necessary factors.

To do that, they first had to discover which factors were the most important. They showed that while many factors contribute to blood cell differentiation, secretion of a protein called osteopontin was most highly correlated with better survival rates in mice treated with MSCs.

The researchers then explored the idea of "mechanopriming" the cells so that they would produce more of the necessary factors. Over the past decade, Van Vliet and other researchers have shown that varying the mechanical properties of surfaces on which stem cells are grown can affect their differentiation into mature cell types. However, in this study, for the first time, she showed that mechanical properties can also affect the factors that stem cells secrete before committing to a specific tissue cell lineage.

Usually, stem cells removed from the body are grown on a flat sheet of glass or stiff plastic. The MIT team decided to try growing the cells on a polymer called PDMS and to vary its mechanical properties to see how that would affect the cells. They designed materials that varied in both their stiffness and their viscosity, which is a measure of how quickly the material stretches when stress is applied.

The researchers found that MSCs grown on materials with mechanical properties most similar that of bone marrow produced the greatest number of the factors necessary to induce HPSPCs to differentiate into mature blood cells.

Better recovery

The researchers then tested their specially grown MSCs by implanting them into mice that had had their bone marrow irradiated. Even though they did not implant any HSPCs, this treatment quickly repopulated the animals' blood cells and helped them to recover more quickly than mice treated with MSCs grown on traditional glass surfaces. They also recovered faster than mice treated with the factor-producing MSCs that were selected by the microfluidic sorting device.

"The mouse studies were models of radiation therapy commonly used to kill cancer cells in the clinic. However, these therapies are highly destructive and also destroy healthy cells as well," Liu says. "Our mechanoprimed MSCs can help to better support and regenerate those healthy bone marrow cells faster in these mouse models, and we hope the same results would translate to humans."

Van Vliet's lab is now performing more animal studies in hopes of developing a combination treatment of MSCs and HSPCs that could be tested in humans.

"You can't survive with a low blood cell count for very long," she says. "If you're able to get your complete blood cell count up to normal levels faster, you have a much better prognosis for speed of recovery."

The researchers also hope to study whether mechanopriming can induce MSCs to produce different factors that would stimulate the development of additional cell types that could be useful for treating other diseases.

"You could imagine that by changing their culture environment, including their mechanical environment, MSCs could be used for administration to target several other diseases," such as Parkinson's disease, rheumatoid arthritis, and others, Van Vliet says.
-end-
The research was funded by the BioSystems and Micromechanics Interdisciplinary Research Group of the Singapore-MIT Alliance for Research and Technology (SMART), through the Singapore National Research Foundation, and the National Institutes of Health.

Massachusetts Institute of Technology

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.