Marine algae bloom-derived biotoxins alter development of zooplankton and ocean food web

October 24, 2018

Researchers from the University of Barcelona in collaboration with a team from the Zoological Station Anton Dohrn (Italy) have analysed the impact of diatom algae in the development of Oikopleura dioica (O. Dioica), a type of marine zooplankton invertebrate which plays an important role in the global dynamics of the marine food webs and the biosphere carbon cycle. The results, published in the new scientific journal from the group Nature Communications Biology, show that biotoxins that are produced by these algae at the end of the blooms can affect the embryonic development, and therefore the reproduction of this species, with severe ecological consequences.

The study, led by UB lecturers Ricard Albalat and Cristian Cañestero from the Department of Genetics, Microbiology and Statistics and members of the Biodiversity Research Institute (IRBio) of the UB, is especially relevant considering that ocean acidification and warming caused by climate change could intensify the frequency of blooms in harmful algae like diatoms. The following UB researchers also took part in the research study: Núria P. Torres-Águila -first signer of the study-, Josep Martí Solans, Alfonso Ferrández, Alba Almazán and Vittoria Roncalli.

Biotoxins affecting the embryonic development


Diatoms are a type of microalgae that contribute to the marine phytoplankton photoautotrophic production, since these provide nutrients to all other forms of life out of solar light. However, diatoms can produce biotoxins (polyunsaturated aldehydes) as a defence mechanism against its predators, such as small crustacean like copepods. These substances are massively released at the end of the blooms and can alter the biology of marine animals in the area. The new study has analysed the impact of these biotoxins in the development of O. dioca, a type of marine invertebrate belonging to the appendicularian chordates (Appendicularia or Larvacea). Appendicularians are key organisms in the ocean food web, since they process about 10 % of the primary production in the ocean and serve as food for fish larvae in the marine trophic chain. "Results show that biotoxins that are produced by diatoms can cause important alterations in the development of O. dioica inducing a phenotype they call 'golf ball' which affects the embryo morphogenesis and differentiation of their trunk and tail", says Cristian Cañestero.

Moreover, the study reveals these effects take place even in concentrations of the same magnitude order than the ones measured in the sea after diatom blooms. "Although in our study embryonic malformations appear in high concentrations than the ones found in natural conditions, we have also observed lethal embryonic anomalies at similar concentrations to the measured values in nature after blooms", says the researcher.

This discovery is especially relevant considering the increase of acidification and warming in the oceans due climate change could intensify the seriousness and frequency of algae blooms. "Discovering how blooms in harmful algae and the massive production of toxins can alter the physiology of larvae is important due its impact in the marine food web and to predict future problems in fishing caused by global climate change", notes the researcher.

A potential biomarker of zooplankton


The study also analysed the genic response of O. dioica to the impact of biotoxins. "We found that O. dioica can respond to the stress caused by diatoms by delaying the zygotic transcription of the development genes during the first stages and activating defensive genes (set of genes that protect the cell against environmental attacks), even in innocuous concentrations of biotoxins in which we did not observe any embryonic alteration", says Cristian Cañestero.

According to the conclusions of the study, this response could be part of a mechanism developed over the evolution that protects embryos from environmental dangers and which would serve as a potential biomarker. "Defensive genes would be a molecular biosensor that marine ecologists could use to control the genetic stress in natural populations of appendicularians, and other organisms, exposed to algae blooms in their habitat, and afterwards, assess the potential impact of blooms associated with climate change", highlights the researcher.

These results open a new study area for the UB research team. "The article brings the basics of a new research line in the EcoEvoDevo field, the intersection between Ecology, Developmental Biology and Evolution, which will do research on whether the embryos of marine organisms are ready to respond to climate change", concludes Cristian Cañestero.
-end-


University of Barcelona

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.