Researchers identify three distinct stages in infant microbiome development

October 24, 2018

In the largest clinical microbiome study in infants reported to date, a team led by researchers at Baylor College of Medicine explored the sequence of microbial colonization in the infant gut through age 4 and found distinct stages of development in the microbiome that were associated with early life exposures. Published in the journal Nature, their report and an accompanying report led by the Broad Institute are the result of extensive analysis of data collected from a cohort of participants involved in the TEDDY diabetes study.

The TEDDY study (The Environmental Determinants of Diabetes in the Young) study has been collecting data for 10 years with the goal of understanding what triggers type 1 diabetes in children at increased genetic risk for the disease. Researchers at six clinical centers in the U.S., Sweden, Finland, and Germany, as well as the Data Coordinating Center at the University of South Florida, have gathered monthly stool samples and data from more than 8,600 children who are genetically susceptible to type 1 diabetes. From this cohort, researchers at Baylor College of Medicine analyzed 12,005 stool samples that were collected from 903 children between three and 46 months of age to further understand what the microbiome looks like early in life.

"We know that the first few years of life are important for microbiome establishment. You are born with very few microbes, and microbial communities assemble on and in your body through those first years of your life," said Dr. Joseph Petrosino, director of the Alkek Center for Metagenomics and Microbiome Research and professor and interim chair of molecular virology and microbiology at Baylor. "In this study, we took a closer look in this amazing cohort at the establishment of the microbiome over the first few years of life and the early life exposures associated with that sequence of events."

Using state of the art sequencing of both RNA and DNA to uncover the complete genetic set up of all microbes, Petrosino and his team determined that the developing gut microbiome undergoes three distinct phases of microbiome progression:

  1. Developmental phase (3 to 14 months of age)
  2. Transitional phase (15 to 30 months of age) and
  3. Stable phase (31 to 46 months of age)


"This information is useful for any future microbiome studies looking at an infant cohort for scientific discovery and potential intervention purposes. The idea that we can stratify the development phases in this manner may give researchers additional resolution to reveal differences that could potentially be disease-associated," Petrosino said.

More insights into microbiome development

The study found an association between at least partial breastfeeding and having a higher abundance of Bifidobacterium breve and Bifidobacterium bifidum, two types of bacterial species with probiotic properties known to be prevalent early in life. In addition, the cessation of breastfeeding accelerated the maturation of the infant's microbiome, meaning it proceeded quickly through the other stages to the stable phase, which is hallmarked by higher amounts of the bacteria Firmicutes spp.

"Further research will help better understand the implications of having an accelerated rate of microbiome maturation," Petrosino said.

In those infants who were breastfed, the strains of Bifidobacterium that had the genetic capability of processing human milk were no longer detected once breastfeeding stopped.

"The presumption is that selective pressure for these organisms to be present during breastfeeding is removed once breastfeeding stops, and other strains of Bifidobacterium that do not process the metabolites in breast milk can then grow," Petrosino said. "This provides insight into how the early diet is impacting microbiome development."

The researchers also found an association between vaginal delivery and having a greater abundance of bacteria belonging to the Bacteroides genus. However, having more Bacteroides at birth was not exclusive to those infants who were delivered by this mode. Those who did have more Bacteroides at birth tended to have a greater diversity of microbes early in the first 40 months of life.

"Again, the implications are not yet clear. Having microbial diversity is typically thought of as beneficial, but we still don't fully understand which microbial signals early in life are important for development," Petrosino said.

Petrosino noted that these data already are being used, along with the extensive TEDDY metadata repository, to better understand how environmental exposures contribute to progression to type 1 diabetes. Additional provocative microbiome analyses, including the viral and fungal microbiome constituents, are underway and will also include human genomic, metabolomic and proteomic data, as well as dietary and infectious episode information.

"These initial analyses have reinforced previous infant studies and also have revealed additional important microbiome associations during this critical time in life. Future discoveries from this cohort will pave the way for focused mechanistic work to elucidate how the microbiome influences health and disease, particularly type 1 diabetes," said Dr. Christopher Stewart, co-first author of the study, formerly a postdoctoral researcher at the Petrosino lab at Baylor and now a research fellow at Newcastle University.

"It is cohorts such as this, where we can integrate clinical data with patient-specific exposure, genomic and microbiome analyses, that will lead to precision medicine-based diagnostics and therapeutics for type 1 diabetes and many other diseases," Petrosino concluded.
-end-
Others who took part in the study include Nadim J. Ajami, Jacqueline L. O'Brien, Diane S. Hutchinson, Daniel P. Smith, Matthew C. Wong, Matthew C. Ross, Richard E. Lloyd, Harsha Vardhan Doddapaneni, Ginger A. Metcalf, Donna Muzny and Richard A. Gibbs, all with Baylor; Tommi Vatanen, Curtis Huttenhower and Ramnik J. Xavier with the Broad Institute of MIT and Harvard; Marian Rewers with the University of Colorado; William Hagopian with the Pacific Northwest Diabetes Research Institute; Jorma Toppari with Turku University Hospital in Finland; Anette G Ziegler with Helmhotz Zentrum München in Germany; Jin-Xiong She with the Medical College of Georgia - Augusta University; Beena Akolkar with the National Institute of Diabetes and Digestive and Kidney Diseases, part of the National Institutes of Health; Åke Lernmark with Lund University in Sweden; Heikki Hyoty with the University of Tampere and Fimlab Laboratories in Finland; and Kendra Vehik and Jeffrey P. Krischer with the University of South Florida Morsani College of Medicine.

This research was conducted on behalf of the TEDDY Study Group, which is funded by U01 DK63829, U01 DK63861, U01 DK63821, U01 DK63865, U01 DK63863, U01 DK63836, U01 DK63790, UC4 DK63829, UC4 DK63861, UC4 DK63821, UC4 DK63865, UC4 DK63863, UC4 DK63836, UC4 DK95300, UC4 DK100238, UC4 DK106955, UC4 DK112243, UC4 DK117483, and Contract No. HHSN267200700014C from the NIH's National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Allergy and Infectious Diseases, Eunice Kennedy Shriver National Institute of Child Health and Human Development and National Institute of Environmental Health Sciences; Centers for Disease Control and Prevention; and JDRF (the leading global organization funding type 1 diabetes research). This work was supported in part by the NIH/NCATS Clinical and Translational Science Awards to the University of Florida (UL1 TR000064) and the University of Colorado (UL1 TR001082). R.J.X. were supported by funding from JDRF (2-SRA-2016-247-S-B and 2-SRA-2018-548-S-B).

Baylor College of Medicine

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.