Nav: Home

Massive fangs and a death crush: How a 370 million year old tetrapod hunted and killed

October 24, 2019

The habits of a needle-toothed tetrapod which lived more than 370 million years ago have filled in a piece of the evolutionary puzzle thanks to new research.

An international team of palaeontologists pieced together the fossilised skeletons of a new species of tetrapod called Parmastega aelidae and found it had a skull which resembled a crocodile - a unique feature among the earliest tetrapods - with eyes situated well above the top of its head, suggesting it was capable of "keeping an eye" on unsuspecting prey while swimming close to the surface of a tropical lagoon.

The unusual combination of anatomical features has cast new light on how one of most distant ancestors hunted and its life-style. Researchers believe it would have used its slender needle-like teeth and elastic jaw to snatch prey before crushing it to death with massive fangs protruding from its palate.

The team also found that part of its shoulder girdle consisted of cartilage, and its vertebral column and paired limbs could also be made of cartilage, indicating it probably spent most or all its time in water. The concentration of the fossil remains also suggests that it may have lived in large groups.

Tetrapods are represented today by amphibians, reptiles, birds and mammals, and Parmastega predates the former earliest records of complete or almost complete tetrapod skeletons by nearly 12 million years.

The new study was led by the Ural Branch of the Russian Academy of Science, in partnership with the Universities of Lincoln and Cambridge in the UK, the University of Latvia, and the University of Uppsala in Sweden. It was funded by the National Geographic Society, the Latvian Council of Science, and the Knut and Alice Wallenberg Foundation.

Professor Per Ahlberg from the University of Uppsala in Sweden, explained that a clue to the lifestyle of Parmastega was provided by its sensory canals, used to detect vibrations in the water, which Parmastega inherited from its fish ancestors.

"These canals are well developed on the lower jaw, the snout and the sides of the face, but they die out on top of the head behind the eyes," he said. "This probably means that it spent a lot of time hanging around at the surface of the water, with the top of the head just awash and the eyes protruding into the air.

"We believe there may have been large arthropods such as millipedes or 'sea scorpions' to catch at the water's edge. The slender, elastic lower jaw certainly looks well-suited to scooping prey off the ground, its needle-like teeth contrasting with the robust fangs of the upper jaw that would have been driven into the prey by the body weight of Parmastega.

"These fossils give us the earliest detailed glimpse of a tetrapod: an aquatic, surface-skimming predator, just over a metre in length, living in a lagoon on a tropical coastal plain."

Dr Marcello Ruta from Lincoln's School of Life Sciences added: "The evolution of tetrapods is one of the most important events in the history of backboned animals, and ultimately led to the appearance of our own species. Early in their history, tetrapods evolved many changes in their feeding strategies, movement abilities, and sensory perception, but many of these are still shrouded in mystery.

"Like all fossil organisms, Parmastega occupies a special and unique place in the tree of life. Our study welcomes a new, very early member of that tree which shows considerable anatomical, functional and ecological experimentation.

"These new findings demonstrate that the sequence of evolutionary changes that occurred during the transition from fish-like creatures to tetrapods were much less linear than previously thought. This helps us to amend or challenge previous evolutionary scenarios and give new insights into the life and environments of our most distant forerunners. Findings like those of Parmastega can help us grasp the complex patterns and processes that have shaped life's diversity for hundreds of millions of years."
-end-
The findings have been published in the scientific journal, Nature.

University of Lincoln

Related Body Weight Articles:

Examining association between childhood video game use, adolescent body weight
Researchers looked at whether there was a long-term association between using video games at an early age and later weight as a teenager, as well as what role behaviors such as physical activity, the regularity of bedtimes and consuming sugar-sweetened beverages might play.
Brain receptor that regulates body heat may also help accelerate weight loss
The brain mechanism that enables us to maintain a constant body temperature may also be the key to rapid weight loss, a new study finds.
Short-term study suggests vegan diet can boost gut microbes related to body weight, body composition and blood sugar control
New research presented at this year's Annual Meeting of the European Association for the Study of Diabetes (EASD) in Barcelona, Spain (Sept.
Increased body weight in adolescent boys linked with heart attack before 65
A study in nearly 1.7 million 18-year-old boys has found that higher body mass index (BMI) is linked with greater risk of a heart attack before 65 years of age.
Substantial increase in body weight since 1960s due to interplay between genes and environment
People with a genetic predisposition to obesity are not only at greater risk of excess weight, their genes interact with an increasingly 'obesogenic' environment, resulting in higher body mass index (BMI) in recent decades, finds a study from Norway published by The BMJ today.
Excess weight and body fat cause cardiovascular disease
In the first Mendelian randomization study to look at this, researchers have found evidence that excess weight and body fat cause a range of heart and blood vessel diseases (rather than just being associated with it).
New brain mechanisms regulating body weight
Researchers at University of Gothenburg, Sweden, clarify the link between the molecule interleukine-6 (IL-6) in the brain and obesity.
Excess body weight before 50 is associated with higher risk of dying from pancreatic cancer
Excess weight before age 50 may be more strongly associated with pancreatic cancer mortality risk than excess weight at older ages, according to results of a study presented at the AACR Annual Meeting 2019, March 29-April 3.
Personality type could shape attitudes toward body weight of others, researchers say
Researchers found that personality traits have significant bearing on a person's attitudes toward obesity, their implicit theories of weight and their willingness to engage in derisive fat talk or weight discrimination.
Proportion of cancers associated with excess body weight varies considerably by state
A new study finds an at least 1.5-fold difference in the share of cancers related to obesity between states with the highest and lowest proportions.
More Body Weight News and Body Weight Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.