GIS-based analysis of fault zone geometry and hazard in an urban environment

October 24, 2019

Boulder, Colo., USA: Typical geologic investigations of active earthquake fault zones require that the fault can be observed at or near the Earth's surface. However, in urban areas, where faults present a direct hazard to dense populations, the surface expression of a fault is often hidden by development of buildings and infrastructure. This is the case in San Diego, California, where the Rose Canyon fault zone trends through the highly developed downtown.

Due to regulations on development in areas of active faulting, hundreds of individual, city block-sized fault investigations have been conducted by geotechnical consulting firms in downtown San Diego since the late 1970s. The reports produced from these investigations include information on geology and faulting beneath the urban landscape that is valuable to government agencies, the geotechnical community, and earthquake scientists.

Luke Weidman, Jillian M. Maloney, and Thomas K. Rockwell compiled data from 268 of these individual reports to create the first centralized geodatabase for study of the Rose Canyon fault zone through downtown San Diego. The geodatabase includes 2020 georeferenced datapoints with links to the original data logs. The team then used the interactive geodatabase to examine the geometry of the Rose Canyon fault zone beneath the city.

Fault mapping revealed a complex geometry, likely related to a step in the fault zone towards the west and offshore. More work is needed, however, to assess changes in fault activity through time and how those changes may relate to fault zone evolution. The team also identified several places where fault segments mapped in geotechnical reports do not match with other publicly available fault databases.

These contradictions should be resolved for more accurate hazard assessment for the region. Overall, the geodatabase proved to be an effective way to map complex fault zone geometry that is otherwise obscured by development at Earth's surface.

The data held within the geodatabase could also be used for future research on patterns of earthquake occurrence and for models of ground shaking caused by potential future earthquakes along the fault zone. The geodatabase was made publicly available to facilitate these types of projects. A similar approach may be useful in other major cities world-wide where fault zones are located beneath developed regions, such as Los Angeles and San Francisco (USA), Izmit (Turkey), Wellington (New Zealand), and Kumamoto (Japan).

Geotechnical data synthesis for GIS-based analysis of fault zone geometry and hazard in an urban environment

Luke Weidman, Jillian M. Maloney (corresponding author:, Thomas K. Rockwell. URL:

GEOSPHERE articles are available at Representatives of the media may obtain complimentary copies of GEOSPHERE articles by contacting Kea Giles at the address above. Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to GEOSPHERE in articles published. Non-media requests for articles may be directed to GSA Sales and Service,

Geological Society of America

Related Geometry Articles from Brightsurf:

Memory in a metal, enabled by quantum geometry
Berkeley researchers led by Professor Xiang Zhang in collaboration with a Stanford University team invented a new data storage method by making odd numbered layers slide relative to even-number layers in tungsten ditelluride, which is only 3nm thick.

"Inchworm" pattern of Indonesian earthquake rupture powered seismic "boom"
A sonic boom-like seismic phenomenon of supershear rupture occurred during the 2018 Palu earthquake in Indonesia.

Order from noise: How randomness and collective dynamics define a stem cell
Without stem cells, human life would not exist. Due to them, a lump of cells becomes an organ, and a fertilized egg develops into a baby.

Geometry of intricately fabricated glass makes light trap itself
Laser light traveling through ornately microfabricated glass has been shown to interact with itself to form self-sustaining wave patterns called solitons.

22,000 tiny tremblors illustrate 3D fault geometry and earthquake swarm evolution
By mapping the more than 22,000 tremblors, researchers composed a detailed, three-dimensional image of the complex fault structure below southern California's Cahuilla Valley.

NUI Galway mathematician publishes article in world's top mathematics journal
An Irish mathematician, Dr Martin Kerin, from the School of Mathematics, Statistics and Applied Mathematics at NUI Galway, has had a research article published in the Annals of Mathematics, widely regarded as the top journal for pure mathematics in the world.

Geometry guided construction of earliest known temple, built 6,000 years before Stonehenge
Researchers at Tel Aviv University and the Israel Antiquities Authority have now used architectural analysis to discover that geometry informed the layout of Göbekli Tepe's impressive round stone structures and enormous assembly of limestone pillars, which they say were initially planned as a single structure.

How to break new records in the 200 metres?
Usain Bolt's 200m record has not been beaten for ten years and Florence Griffith Joyner's for more than thirty years.

GIS-based analysis of fault zone geometry and hazard in an urban environment
Typical geologic investigations of active earthquake fault zones require that the fault can be observed at or near the Earth's surface.

Strange warping geometry helps to push scientific boundaries
Princeton researchers have built an electronic array on a microchip that simulates particle interactions in a hyperbolic plane, a geometric surface in which space curves away from itself at every point.

Read More: Geometry News and Geometry Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to