Deep inside the brain: Unraveling the dense networks in the cerebral cortex

October 24, 2019

Unlike any other organ, our brains contain extremely densely packed networks of membranous cables that are used by our about 86 billion nerve cells for communication amongst each other. Since each nerve cell in the main part of mammalian brains, the so-called cerebral cortex, communicates with about 1,000 other nerve cells via synapses placed along these cables over long distances, one expects a total of about 5 million kilometers of wires packed into our skulls - more than 10 times longer than all highways on our planet, in each of our brains. The cables we find in our (and other mammalian) brains are as thin as 50 to 100 nanometers in diameter, about 1000th the diameter of our hairs. The resulting cable convolute is of such density and magnitude, that for more than 100 years, researchers have been able to only map connectivity between a miniscule fraction of neurons in a given piece of brain.

Only the development of faster electron microscopic techniques ("3D EM") and of more efficient image analysis routines has made the dense mapping of neuronal networks possible. The novel field of "connectomics" has been pursuing the dense mapping of ever larger circuits in several species and brain regions.

In the work published today in Science, a team around Max Planck Director Moritz Helmstaedter imaged and analyzed a piece of tissue from the cerebral cortex of a 4-week old mouse, obtained via biopsy from the somatosensory cortex, a part of the cortex occupied with the representation and processing of touch. Here, the researchers applied optimized AI-based image processing and efficient human-machine interaction to analyze all of the about 400,000 synapses and about 2.7 meters of neuronal cable in the volume. With this, they produced a connectome between about 7,000 axons and about 3,700 postsynaptic neurites, yielding a connectome about 26 times larger than the one obtained from the mouse retina more than half a decade ago. Importantly, this reconstruction was at the same time larger and about 33-times more efficient than the one applied to the retina, setting a new benchmark for dense connectomic reconstruction in the mammalian brain.

Fueled by this this methodological breakthrough in connectomics, the researchers analyzed the connectome for the patterns of circuitry present. In particular, they asked what fraction of the circuit showed properties that were consistent with the growth of synapses, mechanisms known to contribute to circuit formation and "learning". Alessandro Motta, first author of the study and an electrical engineer by training, used particular configurations of synapse pairs to study the degree to which they were in agreement with activity-related learning processes ("LTP"). "Because some models of synaptic plasticity make concrete predictions about the increase in synaptic weight when learning, say, to identify a tree or a cat, we were able to extract the imprint of such potential processes even from a static snapshot of the circuit", explains Motta. Since the mouse had had a normal laboratory life until the brain biopsy at 4 weeks of age, the scientists argue that the degree to which circuits are shaped by learning in "normal" sensory states can be mapped using their approach.

"We were surprised how much information and precision is found even in a still relatively small piece of cortex", says Helmstaedter, and adds "Especially the extraction of the likely learned circuit fraction was a major eye opener for us".

The reported methods may have substantial implications for the transfer of insights about biological intelligence to what today is called "artificial intelligence". "The goal of mapping neuronal networks in the cerebral cortex is a major scientific adventure, also because we hope to be able to extract information about how the brain is such an efficient computer, unlike today's AI", states Helmstaedter. And describes a research field with major players including Google and the research program of the intelligence agencies in the US (IARPA): "The ambition to learn from biological neuronal networks about the future of artificial neuronal networks is shared by major initiatives world-wide. We are very proud about having achieved the first milestone, a dense local cortical connectome, using exclusively public funding from the Max Planck Society".

After almost a decade of work, the researchers are enthusiastic about their achievements. "Being able to take a piece of cortex, process it diligently, and then obtain the entire communication map from that beautiful network is what we have been working for over the last decade", describes Helmstaedter.

The researchers conclude: "We think that our methods, applied over a large range of cortical tissues from different brain areas, cortical layers, developmental time points, and species will tell us how evolution has designed these networks, and what impact experience has on shaping their fine-grained structure".

"Moreover, connectomic screening will allow the description of circuit phenotypes of psychiatric and related disorders - and tell us to what degree some important brain disorders are in fact connectopathies, circuit diseases."
-end-
Original publication:

Motta, Berning, Boergens, Staffler, Beining, Loomba, Hennig, Wissler, Helmstaedter. Dense connectomic reconstruction in layer 4 of the somatosensory cortex.

This paper is published online by the journal Science on 24 October, 2019. DOI:http://science.sciencemag.org/lookup/doi/10.1126/science.aay3134. Cite as: Motta et al., Science 2019. DOI: 10.1126/science.aay3134

Max Planck Institute for Brain Research

Related Nerve Cells Articles from Brightsurf:

Nerve cells let others "listen in"
How many ''listeners'' a nerve cell has in the brain is strictly regulated.

Nerve cells with energy saving program
Thanks to a metabolic adjustment, the cells can remain functional despite damage to the mitochondria.

Why developing nerve cells can take a wrong turn
Loss of ubiquitin-conjugating enzyme leads to impediment in growth of nerve cells / Link found between cellular machineries of protein degradation and regulation of the epigenetic landscape in human embryonic stem cells

Unique fingerprint: What makes nerve cells unmistakable?
Protein variations that result from the process of alternative splicing control the identity and function of nerve cells in the brain.

Ragweed compounds could protect nerve cells from Alzheimer's
As spring arrives in the northern hemisphere, many people are cursing ragweed, a primary culprit in seasonal allergies.

Fooling nerve cells into acting normal
In a new study, scientists at the University of Missouri have discovered that a neuron's own electrical signal, or voltage, can indicate whether the neuron is functioning normally.

How nerve cells control misfolded proteins
Researchers have identified a protein complex that marks misfolded proteins, stops them from interacting with other proteins in the cell and directs them towards disposal.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Research confirms nerve cells made from skin cells are a valid lab model for studying disease
Researchers from the Salk Institute, along with collaborators at Stanford University and Baylor College of Medicine, have shown that cells from mice that have been induced to grow into nerve cells using a previously published method have molecular signatures matching neurons that developed naturally in the brain.

Bees can count with just four nerve cells in their brains
Bees can solve seemingly clever counting tasks with very small numbers of nerve cells in their brains, according to researchers at Queen Mary University of London.

Read More: Nerve Cells News and Nerve Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.