US corn yields get boost from a global warming 'hole'

October 24, 2019

The global average temperature has increased 1.4 degrees Fahrenheit over the last 100 years. In contrast, the Corn Belt of the U.S., one of the most agriculturally productive regions of the world, has experienced a decrease in temperatures in the summer during the growing season. Known as the "U.S. warming hole," this anomalous cooling phenomenon, which occurred in tandem with increasing rainfall, was responsible for boosting corn yields by 5 to 10 percent per year, according to a Dartmouth-led study published in Environmental Research Letters. The study is one of the first to investigate the impacts of the warming hole on agriculture.

Most of the increases in corn yield over the 20th century have resulted from advancements in crop genetics, increased fertilizer application and improved agricultural practices. "If however, the U.S. warming hole had not existed, corn yields for the average county in the central U.S. would have been approximately 10 percent lower per year," explained lead author Trevor F. Partridge, a graduate student in the department of earth sciences at Dartmouth. "This benefit of a 10 percent higher corn yield translates to roughly $1.5 billion per year in additional value. Our results underscore how the central U.S. has been relatively sheltered from the impacts of climate change," he added. ($1.5 billion calculation uses historical market value data from Iowa State University Extension and Outreach and U.S. corn production data from the U.S. Department of Agriculture).

To examine the relationship between corn yields and climate, the researchers used over 70 years of historical climate and yield data, machine learning algorithms, and biophysical crop models to simulate corn yields under multiple climate scenarios. The scenarios included historical climate with the warming hole, where temperatures dropped in the late-1950s and rainfall increased, and a counterfactual climate scenario where temperature and rainfall changes associated with the warming hole were removed.

The researchers found that cooler temperatures associated with the warming hole were responsible for most of the increased U.S. corn yield-- 62 percent of the simulated yield increase, whereas, summer precipitation was responsible for the remaining 38 percent of the simulated yield increase. The lower temperatures allowed corn to mature slower. Extended maturation time allows for more grain to accumulate on a corn plant, increasing yields. The cooler temperatures and increased rainfall associated with the warming hole meant that corn was less likely to experience heat and drought stress during the growing cycle, also increasing yields.

The findings demonstrated that North Dakota and South Dakota, and western Minnesota benefited most from the U.S. warming hole, as counties in these states had yield differences of up to 24 percent based on the study's simulations. For Greene County, Illinois, if the warming hole did not exist, corn yield would have decreased by an average of 26 percent, and maximum temperatures would have increased by an average of 1.8 degrees Fahrenheit.

The authors emphasize that the U.S. warming hole is an anomaly, one of two places in the world that has not warmed significantly, and that the last five years (2014-2018) have, globally averaged, been the hottest years on record. These findings should not be misinterpreted as evidence against the overwhelming scientific consensus that climate change is real and caused by humans. Climate projections suggest that by the mid-21st century, temperatures in the central U.S. will increase by up to 4.1 degrees Fahrenheit, and summer precipitation may decrease by approximately 10 percent.

"The boost in yield that the Corn Belt has enjoyed from the effects of the warming hole is likely to diminish in the future. While this region has been an anomaly for the past half century, we need to be prepared for the challenges associated with climate change," said co-author Jonathan Winter, an assistant professor of geography and principal investigator of the Applied Hydroclimatology Group at Dartmouth.
-end-
Winter is available for comment at: jwinter@dartmouth.edu. In addition to Trevor F. Partridge and Jonathan Winter at Dartmouth, this study has four Michigan State University co-authors-- Lin Liu, Anthony Kendall, Bruno Basso, and David Hyndman.

Dartmouth College

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.