Secrets revealed in sequencing of honey bee genome

October 25, 2006

CHAMPAIGN, Ill. -- What do fruit flies, mosquitoes, silk moths and honey bees have in common? First, they are all insects. Second, they have all had their genomes sequenced, a feat that will make it much easier to discern both similarities and differences.

The honey bee (Apis mellifera) has just joined this elite club. Researchers at the University of Illinois at Urbana-Champaign, along with scientists at other institutions, have already begun probing the honey bee genome for its many secrets. The primary discoveries found so far are presented in the Oct. 26 issue of Nature, and in other scientific journals.

Why sequence the honey bee genome?

"Honey bees are the premier pollinators on Earth, and play a vital role in our nation's economy and food supply," said Gene Robinson, the G. William Arends Professor of Integrative Biology in the department of entomology at Illinois, and director of the U. of I. Bee Research Facility. "Honey bees account for 10 to 20 billion dollars of food produced in America alone, per year," he said.

Honey bees are also very valuable to scientists as model research organisms. "In biology and biomedicine, honey bees are used to study many diverse areas, including allergic disease, development, gerontology, neuroscience, social behavior and venom toxicology," Robinson said. "Because they live in intricate societies, we can view the traits that honey bees exhibit through a prism of extreme sociality."

The Honey Bee Genome Project originated in 1999 when Robinson and Daniel Weaver, a commercial beekeeper in Texas, joined forces to pitch the project. Robinson organized the academic community, while Weaver sought support from the bee industry.

With funding from the National Institutes of Health and the U.S. Department of Agriculture, the sequencing began in December 2002, and was performed by George Weinstock and colleagues at the Human Genome Sequencing Center at the Baylor College of Medicine in Houston.

To sequence a genome, researchers first extract the DNA and break it into tiny pieces. Each of those pieces of genetic material is then sequenced. Lastly, an elaborate computational process puts the pieces back together in correct order.

"It often takes time to translate a genome sequence into results of major scientific import," said Robinson, who is also a researcher at the university's Beckman Institute for Advanced Science and Technology and a theme leader at the university's Institute for Genomic Biology. "However, already some tantalizing findings have emerged that help us better understand the honey bee."

Among the major findings: These early findings hint at the wealth of knowledge to be gained through further study of the honey bee genome, Robinson said. "The honey bee genome project is ushering in a bright era of bee research, for the benefit of agriculture, biological research and human health."
-end-


University of Illinois at Urbana-Champaign

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.