Yale receives $8.4 million to study DNA repair in cancer cells

October 25, 2007

New Haven, Conn.--Yale School of Medicine researchers have received $8.4 million to study how cancer cells mend their own chromosomes and DNA after damage caused by radiation and chemotherapy.

The study funded by the National Institutes of Health (NIH) is the next step in developing targeted cancer therapies, said the lead researcher, Peter Glazer, M.D., chair of therapeutic radiology and leader of the radiobiology research program at Yale Cancer Center.

"We have put together a program to target protein and DNA repair enzymes that fix the DNA," Glazer said. "We feel this could create an 'Achilles heel' for cancer cells that would make them more vulnerable to traditional cancer therapies."

Cancer therapies such as radiation and chemotherapy work by damaging the cancer cells' DNA, which carries the information, or blueprint, for cell replication.

Glazer said the four NIH funded Yale studies combine basic and translational research and may lead to new therapies for use with conventional radiation and chemotherapy.

"It is our hope to be able to offer novel therapies derived from this research to our patients at the Yale Cancer Center," he said. "The overall program represents a significant commitment of the Yale School of Medicine and the participating investigators to studies that have direct relevance to cancer biology and therapy."

In one research project, Alan Sartorelli, professor of pharmacology, will develop new cancer prodrugs that become activated in the low-oxygen conditions in which tumor cells can thrive. Once activated, the drug sets in motion the destruction of a resistance protein that repairs certain DNA lesions.

Glazer will lead a study of the cancer DNA repair genes, RAD51 and BRCA1, in cancer cells. His goal is to devise strategies to render cancer cells vulnerable to therapies that target interconnected repair pathways. RAD51 creates a protein that performs DNA repair and BRCA1 is a tumor suppressor associated with breast cancer.

Joann Sweasy, professor of therapeutic radiology, will study how DNA repair occurs in the normal human population and in tumors. She will examine how deficiencies in DNA repair can be used to guide the design of new cancer therapies.

Patrick Sung, professor of therapeutic radiology and of molecular biophysics and biochemistry, will focus on the repair genes BRCA2, FANCD2, and RAD51, and how their repair pathways are regulated at the level of protein-protein interactions.
-end-


Yale University

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.