Mantis shrimps could show us the way to a better DVD

October 25, 2009

The remarkable eyes of a marine crustacean could inspire the next generation of DVD and CD players, according to a new study from the University of Bristol published today in Nature Photonics.

The mantis shrimps in the study are found on the Great Barrier Reef in Australia and have the most complex vision systems known to science. They can see in twelve colours (humans see in only three) and can distinguish between different forms of polarized light.

Special light-sensitive cells in mantis shrimp eyes act as quarter-wave plates - which can rotate the plane of the oscillations (the polarization) of a light wave as it travels through it. This capability makes it possible for mantis shrimps to convert linearly polarized light to circularly polarized light and vice versa. Manmade quarter-wave plates perform this essential function in CD and DVD players and in circular polarizing filters for cameras.

However, these artificial devices only tend to work well for one colour of light while the natural mechanism in the mantis shrimp's eyes works almost perfectly across the whole visible spectrum - from near-ultra violet to infra-red.

Dr Nicholas Roberts, lead author of the Nature Photonics paper said: "Our work reveals for the first time the unique design and mechanism of the quarter-wave plate in the mantis shrimp's eye. It really is exceptional - out-performing anything we humans have so far been able to create."

Exactly why the mantis shrimp needs such exquisite sensitivity to circularly polarized light isn't clear. However, polarization vision is used by animals for sexual signalling or secret communication that avoids the attention of other animals, especially predators. It could also assist in the finding and catching of prey by improving the clarity of images underwater. If this mechanism in the mantis shrimp provides an evolutionary advantage, it would be easily selected for as it only requires small changes to existing properties of the cell in the eye.

"What's particularly exciting is how beautifully simple it is," Dr Roberts continued. "This natural mechanism, comprised of cell membranes rolled into tubes, completely outperforms synthetic designs.

"It could help us make better optical devices in the future using liquid crystals that have been chemically engineered to mimic the properties of the cells in the mantis shrimp's eye."

This wouldn't be the first time humans have looked to the natural world for new ideas, for example the lobster's compound eye recently inspired the design of an X-ray detector for an astronomical telescope.
-end-
The mantis shrimp research was conducted at the University of Bristol's School of Biological Sciences in collaboration with colleagues at UMBC, USA and the University of Queensland, Australia.

University of Bristol

Related Polarization Articles from Brightsurf:

Highly sensitive detection of circularly polarized light without a filter
Japanese scientists developed a photodiode using a crystalline film composed of lead perovskite compounds with organic chiral molecules to detect circularly polarized light without a filter.

Anti-hacking based on the circular polarization direction of light
The Internet of Things (IoT) allowing smart phones, home appliances, drones and self-driving vehicles to exchange digital information in real time requires a powerful security solution, as it can have a direct impact on user safety and assets.

Germanium telluride's hidden properties at the nanoscale revealed
Germanium Telluride is an interesting candidate material for spintronic devices.

FAST reveals mystery of fast radio bursts from the universe
The Five-hundred-meter Aperture Spherical Radio Telescope (FAST) has revealed some mystery of the fast radio bursts, according to a study published in Nature on Oct.

Graphene detector reveals THz light's polarization
Physicists have created a broadband detector of terahertz radiation based on graphene.

Squaring the circle -- Breaking the symmetry of a sphere to control the polarization of light
Scientists at Tokyo Institute of Technology (Tokyo Tech, Japan) and Institute of Photonic Sciences (ICFO, Spain) develop a method to generate circularly polarized light from the ultimate symmetrical structure: the sphere.

Optical shaping of polarization anisotropy in a laterally-coupled-quantum-dot dimer
Coupled-quantum-dot (CQD) structures are considered to be an important building block in the development of scalable quantum devices.

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination
A hemispherical vanadium oxide cluster has a cavity that can accommodate a bromine molecule.

On-chip spin-Hall nanograting for simultaneously detecting phase and polarization singularities
A plasmonic spin-Hall nanograting structure that simultaneously detects both the polarization and phase singularities of the incident beam is reported.

A new theory about political polarization
A new model of opinion formation shows how the extent to which people like or dislike each other affects their political views -- and vice versa.

Read More: Polarization News and Polarization Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.