Researchers find pathway that drives spread of pediatric bone cancer in preclinical studies

October 25, 2010

BOSTON - Researchers have identified an important signaling pathway that, when blocked, significantly decreases the spread of pediatric bone cancer.

In their study, researchers at The University of Texas MD Anderson Children's Cancer Hospital in Houston found that blocking the Notch pathway in mice decreased metastases in the lungs 15-fold. The results of a series of pre-clinical studies were reported Sunday in an oral presentation at the 42nd Congress of the International Society of Pediatric Oncology.

Their research showed that the Notch pathway and Hes1 gene play a key role in promoting the metastasis of osteosarcoma, the most common form of bone cancer in children.

Approximately 400 children and teens under the age of 20 are diagnosed with osteosarcoma annually, and the majority present with cancer that has already metastasized. The primary destination for the cancer to spread is to the lungs, which accounts for more than 35 percent of pediatric patients dying from osteosarcoma.

"Knowing the initial results from blocking Notch in mice, we are encouraged to keep investigating the entire metastasis process, so we can find additional therapies and targets to prevent cancer from spreading and growing," said Dennis Hughes, M.D., Ph.D., lead investigator and assistant professor at MD Anderson Children's Cancer Hospital.

In addition to Notch and Hes1's role in metastasis, Hughes believes that their expression can be correlated with a patient's prognosis. Hughes conducted a small retrospective study looking at patient samples, and 39 percent of patients with high expression levels of Hes1 survived 10 years versus the 60 percent survival rate for patients who had lower levels.

Ongoing research is studying the impact of various therapies, such as Gamma-secretase inhibitors and histone deacetylase (HDAC) inhibitors, that regulate the Notch pathway and have the potential to affect cancer cell survival. Hughes found that HDAC inhibitors actually increased the Notch pathway in osteosarcoma cells that had low Hes1 expression, which was an unfavorable response in that sample group. However, for cells that presented with high Hes1 expression, where Notch was already maximized, the HDAC inhibitors led to osteosarcoma cell death.

"By defining vital signaling pathways in bone sarcomas, we hope small molecule inhibitors can be applied, leading to longer survival and reducing morbidity and late effects from intensive chemotherapy," said Hughes.

"We also hope these new findings may apply to other solid tumors such as breast, prostate, colon and more, but we'll need additional research to determine whether or not that is the case," he added.
-end-
Primary funding for the studies was provided through the Physician-Scientist Program at MD Anderson along with additional support from the Jori Zemel Children's Bone Tumor Foundation, Hope Street Kids Foundation and Joan Alexander Fund. Other collaborators include Pingyu Zhang, Ph.D., Yanwen Yang, Daniela Katz, M.D., and Patrick Zweidler-McKay, M.D., Ph.D., from MD Anderson Cancer Center as well as Dafydd Thomas, M.D., Ph.D., from the University of Michigan Medical Center.

About MD Anderson

The University of Texas MD Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. MD Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For seven of the past nine years, including 2010, MD Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

About MD Anderson Children's Cancer Hospital

The University of Texas MD Anderson Children's Cancer Hospital has been serving children, adolescents and young adults for more than 65 years. In addition to the groundbreaking research and quality of treatment available to pediatric patients, the nationally ranked Children's Cancer Hospital provides comprehensive programs that help children lead more normal lives during and after treatment. For further information, visit the Children's Cancer Hospital Web site at www.mdanderson.org/children

University of Texas M. D. Anderson Cancer Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.