New bio-adhesive polymer demonstrated in JoVE

October 25, 2012

A new video-article in JoVE, Journal of Visualized Experiments, details the use of a new laser-activated bio-adhesive polymer. The chitosan-based polymer, SurgiLux, was developed by scientists at the University of New South Wales. Chitosan is a polymer derived from chitin, which is found in fungal cell walls or in exoskeletons of crustaceans and insects.This molecular component allows SurgiLux to form low energy bonds between the polymer and the desired tissue when it absorbs light. The technology may soon replace traditional sutures in the clinic.

For thousands of years, clinicians have been using sutures to close open wounds and help repair torn tissues. Dr. L. John Foster from the University of New South Wales explains that, "though sutures have a superior strength to SurgiLux, sutures are physically invasive and do not support tissue regeneration. SurgiLux is a thin film, so you do not end up with any physical invasion or further damage to the tissue, thus allowing more complete healing." This is beneficial when repairing delicate tissues like neurons or blood vessels.

The SurgiLux polymer has two valuable properties: it can achieve a uniform seal when activated by a laser, and has antimicrobial properties attributable to the chitosan base. Together, these features prevent the wound from becoming infected and maintain a barrier between the tissue and its surroundings. A suture would require extensive bandaging to achieve the same results. The polymer is particularly useful for hard-to-operate tissues or organs, such as the eye. "We are exploring ophthalmology as a venue for SurgiLux in human patients. SurgiLux can be readily applied to the eye during surgery, and can seal the cornea in place during keratoplasty when sutures cannot," tells Dr. Foster.

Dr. Foster and his team chose to publish in JoVE to expedite adoption of the technology. While the concept of SurgiLux has been previously published, this is the first demonstration of its application with the laser. "Many surgeons want to adopt it immediately. However, people don't know how to use the lasers. JoVE can visually show that this is not a difficult system and that any group with a basic background in biochemistry can buy a laser and get to work testing SurgiLux."
-end-
Foster et. al. http://www.jove.com/video/3527/a-chitosan-based-laser-activated-thin-film-surgical-adhesive-surgilux

About JoVE, The Journal of Visualized Experiments:

JoVE, the Journal of Visualized Experiments, is the first and only PubMed/MEDLINE-indexed, peer-reviewed journal devoted to publishing scientific research in a video format. Using an international network of videographers, JoVE films and edits videos of researchers performing new experimental techniques at top universities, allowing students and scientists to learn them much more quickly. As of October 2012, JoVE has published video-protocols from an international community of nearly 6,000 authors in the fields of biology, medicine, chemistry, and physics.

URL: www.jove.com

To link to this release, please use this link: http://www.jove.com/about/press-releases/47/new-bio-adhesive-polymer-demonstrated-in-jove

Contact:

Neal Moawed
Academic Liaison & Marketing Associate
The Journal of Visualized Experiments
p. 617.945.9051
e. neal.moawed@jove.com

The Journal of Visualized Experiments

Related Laser Articles from Brightsurf:

Laser technology: New trick for infrared laser pulses
For a long time, scientists have been looking for simple methods to produce infrared laser pulses.

Sensors get a laser shape up
Laser writing breathes life into high-performance sensing platforms.

Laser-powered nanomotors chart their own course
The University of Tokyo introduced a system of gold nanorods that acts like a tiny light-driven motor, with its direction of motion is determined by the orientation of the motors.

What laser color do you like?
Researchers at the National Institute of Standards and Technology (NIST) and the University of Maryland have developed a microchip technology that can convert invisible near-infrared laser light into any one of a panoply of visible laser colors, including red, orange, yellow and green.

Laser technology: The Turbulence and the Comb
While the light of an ordinary laser only has one single, well-defined wavelength, a so-called ''frequency comb'' consists of different light frequencies, which are precisely arranged at regular distances, much like the teeth of a comb.

A laser for penetrating waves
The 'Landau-level laser' is an exciting concept for an unusual radiation source.

Laser light detects tumors
A team of researchers from Jena presents a groundbreaking new method for the rapid, gentle and reliable detection of tumors with laser light.

The first laser radio transmitter
For the first time, researchers at Harvard School of Engineering have used a laser as a radio transmitter and receiver, paving the way for towards ultra-high-speed Wi-Fi and new types of hybrid electronic-photonic devices.

The random anti-laser
Scientists at TU Wien have found a way to build the 'opposite' of a laser -- a device that absorbs a specific light wave perfectly.

Laser 'drill' sets a new world record in laser-driven electron acceleration
Combining a first laser pulse to heat up and 'drill' through a plasma, and another to accelerate electrons to incredibly high energies in just tens of centimeters, scientists have nearly doubled the previous record for laser-driven particle acceleration at Berkeley Lab's BELLA Center.

Read More: Laser News and Laser Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.