Baylor, DNAnexus, Amazon Web Services collaboration enables largest-ever cloud-based analysis of genomic data

October 25, 2013

HOUSTON - (Oct. 25, 2013) - With their participation in the completion of the largest cloud-based analysis of genome sequence data, researchers from the Baylor College of Medicine Human Genome Sequencing Center are helping to usher genomic scientists and clinicians around the world into a new era of high-level data analysis. (A "cloud" is a virtual network of remote internet servers used to store, manage and process information.)

"The mission of the Baylor Human Genome Sequencing Center is to drive genomics and genomic analysis to be at the leading edge of everything in the field," said Dr. Jeffrey Reid, assistant professor in the Human Genome Sequencing Center at BCM, who led the BCM portion of the project. "In terms of analysis, the future of genomic research and genomic medicine is in the cloud. We are very much going towards more computing and not less."

Together with the Platform-as-a-Service company DNAnexus and Amazon Web Services, the largest provider of cloud computing, BCM sequenced the DNA of more than 14,000 individuals -- 3,751 whole genomes and 10,771 whole exomes using next generation sequencing. (An exome contains all the genes in a genome and are the part of the genome that provides the blueprints for proteins.) The individuals whose genetic material was sequenced are part of the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium or CHARGE project aimed at advancing understanding of human genetics and the contributions to heart disease and aging.

Reid gave a presentation on the project today (Oct. 25) at the American Society of Human Genetics annual meeting in Boston.

The BCM Human Genome Sequencing Center-developed Mercury pipeline, a semi-automated and modular set of tools for the analysis of next generation sequencing data in both research and clinical contexts, was an integral part of the project. The pipeline identifies mutations from genomic data, setting the stage for determining the significance of these mutations as a cause of serious disease.

Led by Dr. Eric Boerwinkle, professor and director of the Human Genetics Center at The University of Texas Health Science Center at Houston and associate director of the Human Genome Sequencing Center at BCM, the CHARGE project involves more than 300 researchers across five institutions around the world. The cloud-based analysis makes it possible for the large group to have access to an expansive network of data over a server that is HIPAA certified to not compromise patient privacy.

"The collaboration between the CHARGE consortium and the Human Genome Sequencing Center is leading to discovery of those genes contributing to risk of the most important diseases plaguing the U.S. population across all age groups," said Boerwinkle. "Ultimately, these discoveries forge a path toward novel therapeutics and diagnostics. The use of cloud computing and collaboration with DNAnexus is allowing us to achieve our goals faster and in a more cost-effective manner."(Boerwinkle will give an updated presentation November 15 at the Cold Spring Harbor Laboratory's Personal Genomes & Pharmacogenomics Meeting.)

"Having access to this much data was unique," said Reid. "Many institutions do not have the local compute resources and infrastructure to support large scale analysis projects like this one, so we were lucky to come together with DNAnexus and Amazon Web Services to make this project possible."

The project required approximately 2.4 million core-hours of computational time, generating 440 TB (terabytes) of results and nearly a petabyte of storage that took place over a four-week period.

By comparison, the 1,000 genomes project sequenced 2,535 exomes and required 25 TB of data.

"It is very important for us to create a centralized space where researchers from all over the world can come and collaborate with the data," said Reid. "This project creates expansive access to this data over a protected network that will advance research."
-end-


Baylor College of Medicine

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.