Recognizing cancer diseases at an early stage

October 25, 2013

Researchers at the Ruhr-Universität Bochum (RUB) have developed a new spectroscopic method to support pathologists in diagnosing cancer. In the Journal of Biophotonics and the Analyst they compared conventional procedures for colon cancer identification with a novel method called label-free spectral histopathology. "Contrary to previous methods we no longer have to stain the tissue in order to detect cancer," says Professor Klaus Gerwert from the Protein Research Unit Ruhr within Europe (PURE) at the RUB. "In the future, this will give us the opportunity to classify a tissue sample automatically as being either normal or diseased."

Diagnosis: colon cancer

Today pathologists slice tissue obtained from biopsies into thin sections, stain them chemically, and eventually identify colon cancer by visual inspection under the microscope. This is usually done at an advanced stage of the disease, and the method provides no information about the molecular causes of the tumour. However, the method of spectral histopathology (SHP) established at the RUB Department of Biophysics captures molecular alterations directly in the tissues, especially changes of proteins. It works without any labelling agents, such as fluorescent dyes. SHP may even detect alterations occurring in early tumour stages. Since the analysis uses light beams, SHP is not limited to thin sections of biopsy specimens - in fact, one can apply the method directly in live tissue, where it allows to inspect a site of interest with the aid of fibre-optics. "In the future, we intend to work together with clinical partners and apply spectral histopathology to patients directly via endoscopes," says Klaus Gerwert.

How spectral histopathology works

In SHP, researchers record spatially resolved vibration spectra of a tissue using either an infrared or a Raman microscope. A vibration spectrum reflects the condition of all proteins in a tissue at the site measured. Alterations induced by cancer are reflected in the respective spectrum. The spectrum is thus representative of the status of the sample, just like a fingerprint is characteristic of an individual person. Approximately ten million infrared spectra are usually recorded to produce one single tissue image. Using sophisticated computational image analysis procedures, researchers compare these spectra with a reference database. This database contains spectra of already known tissues and tumours, and has been established in the PURE consortium as a collaboration between pathologists, biophysicists and bioinformaticians. The analytical programme allocates each spectrum to tissue types that have been stored in the database, represented by a specific colour--just like an offender who can be identified by comparing his fingerprints with previous database entries. This produces a spatially resolved annotated image of the colon tissue section. Both PURE members, Professor Andrea Tannapfel, Director of the Pathology Institute at the RUB, and Professor Axel Mosig, Head of Bioinformatics at the Department of Biophysics, made the essential contributions in creating the database and the evaluation algorithm. By now, the evaluation programme will run on any commercial laptop.

Comparison with conventional tumour detection methods

In order to test the sensitivity and specificity of spectral histopathology, the RUB team compared SHP with classical immunohistochemical methods, in which tumours are identified with the aid of fluorescent labels. "The results match perfectly. It demonstrates impressively that spectral histopathology is capable of determining changes in tissue composition with high sensitivity and in an automated fashion," says Prof Gerwert. In fact, sensitivity and specificity of the method exceed 95 per cent. By extending their method to include Raman imaging, the RUB team achieved a higher spatial resolution than they could with infrared imaging, however, at the cost of prolonged measurement time. "Both methods complement each other excellently," comments Klaus Gerwert. "Infrared spectroscopy gives you a rapid overview of the entire tissue section. We can then analyse suspicious regions in more detail by applying Raman imaging." Raman analysis, for example, reveals altered nuclei which are characteristic of tumours.
Project funding

The project receives financial support from the regional state of North-Rhine Westphalia in the scope of the European Protein Research Institute PURE, whose speaker is Prof Gerwert.

Bibliographic record

A. Kallenbach-Thieltges, F. Großerüschkamp, A. Mosig, M. Diem, A. Tannapfel, K. Gerwert (2013): Immunohistochemistry, histopathology and infrared spectral histopathology of colon cancer tissue sections, Journal of Biophotonics, DOI: 10.1002/jbio.201200132

L. Mavarani, D. Petersen, S.F. El-Mashtoly, A. Mosig, A. Tannapfel, C. Kötting, K. Gerwert (2013): Spectral Histopathology of colon cancer tissue sections by Raman imaging with 532 nm excitation provides label free annotation of lymphocytes, erythrocytes and proliferating nuclei of cancer cells, Analyst, DOI: 10.1039/C3AN00370A

Figures online

Two figures related to this press release can be found online at:

More information

Prof Dr Klaus Gerwert, Department of Biophysics, Faculty of Biology and Biotechnology at the Ruhr-Universität, 44780 Bochum, Germany, Tel. +49/234/32-24461, E-Mail:

Click for more


Editorial journalist: Dr Julia Weiler

Ruhr-University Bochum

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to