Enzyme restores function with diabetic kidney disease

October 25, 2013

Researchers at the University of California, San Diego School of Medicine say that, while a prevailing theory suggests elevated cellular levels of glucose ultimately result in diabetic kidney disease, the truth may, in fact, be quite the opposite. The findings could fundamentally change understanding of how diabetes-related diseases develop - and how they might be better treated.

Writing in the October 25 issue of Journal of Clinical Investigation, Kumar Sharma, MD, professor of medicine and director of the Center for Renal Translational Medicine (CRTM) at UC San Diego, Laura Dugan, MD, professor of medicine and Larry L. Hillblom Chair in geriatric medicine, Young You, PhD (CRTM), Robert Naviaux, MD, PhD, professor of medicine, and colleagues describe first-ever studies of real-time superoxide production in the kidneys of live mice with type 1 diabetes.

Current theory posits that impaired diabetic kidney function in humans as well as in mice is the result of chronically high glucose (sugar) levels which prompt energy-generating mitochondria in cells to produce an overabundance of superoxide anion - a highly reactive, toxic molecule that ultimately leads to downstream cellular damage, organ dysfunction and disease.

But Sharma, who also works for the Veterans Administration San Diego Healthcare System, and colleagues upend this theory. Rather than detecting higher-than-normal levels of superoxide in the damaged kidneys of the diabetic mice, the researchers discovered reduced superoxide production and suppressed mitochondrial activity. When they stimulated the mitochondria by activating a key energy-sensing enzyme called AMPK, superoxide production increased but evidence of diabetic kidney disease markedly declined.

"Mitochondrial superoxide does not seem to be a causative factor of diabetic kidney disease," said Sharma. "Indeed, when mitochondrial superoxide is increased with AMPK activation, there is reduced kidney disease, suggesting that improving mitochondrial function and superoxide production is actually beneficial for diabetic complications. This idea is a sea change in the field of diabetic complications."

Sharma said the problematic reduction in AMPK activity is likely due to "caloric excess," which creates cellular imbalances associated with inflammation and fibrosis.

Boosting beneficial AMPK activity may be achieved through simple lifestyle changes, such as weight loss and exercise, Sharma noted. There is also considerable on-going research into the development of new agonist drugs that mimic or activate AMPK.

"In addition, methods will need to be developed to monitor mitochondrial function in animal models and in clinical trials," said Sharma. "The study of metabolites may be of great value to monitor mitochondrial non-invasively. Other methods, such as novel imaging tools like the one described in our paper, will also be important to follow mitochondrial superoxide production. It's interesting to note that recent studies by other groups have suggested that stimulating mitochondrial superoxide production may actually increase longevity and contribute to the benefits of exercise."
-end-
Co-authors include Sameh S. Ali, Grigory Shekhtman, William Nguyen and Andre Chepetan, Division of Geriatrics, Department of Medicine, UCSD; Maggie Diamond-Stanic, Satoshi Miyamoto, Anne-Emilie DeCleves, Tammy Quach and San Ly, Center for Renal Translational Medicine, Division of Nephrology-Hypertension, Department of Medicine, UCSD and Veterans Administration San Diego Healthcare System; Aleksander Andreyev, and Anne Murphy, Department of Pharmacology, UCSD; Robert K. Naviaux, Thuy P. Le, Lin Wang, Ming Xu and Kacie P. Paik, The Mitochondrial and Metabolic Disease Center, Department of Medicine, UCSD; Agnes Fogo, Department of Pathology, Vanderbilt University; Benoit Viollet, Institute Cochin, Universite Paris Descartes, CNRS, Paris; Frank Brosius, Department of Internal Medicine, University of Michigan Medical School.

Funding support for this research came, in part, from the Juvenile Diabetes Research Foundation, the National Institutes of Health (grants DP3DK094352, U01DK076133, R01DK053867 and AG030320), the Veterans Administration, the Christini Fund, the Wright Foundation, the Lennox Foundation and the Larry L. Hillblom Foundation.

University of California - San Diego

Related Disease Articles from Brightsurf:

CLCN6 identified as disease gene for a severe form of lysosomal neurodegenerative disease
A mutation in the CLCN6 gene is associated with a novel, particularly severe neurodegenerative disorder.

Cellular pathway of genetic heart disease similar to neurodegenerative disease
Research on a genetic heart disease has uncovered a new and unexpected mechanism for heart failure.

Mechanism linking gum disease to heart disease, other inflammatory conditions discovered
The link between periodontal (gum) disease and other inflammatory conditions such as heart disease and diabetes has long been established, but the mechanism behind that association has, until now, remained a mystery.

Potential link for Alzheimer's disease and common brain disease that mimics its symptoms
A new study by investigators from Brigham and Women's Hospital uncovered a group of closely related genes that may capture molecular links between Alzheimer's disease and Limbic-predominant Age-related TDP-43 Encephalopathy, or LATE, a recently recognized common brain disorder that can mimic Alzheimer's symptoms.

Antioxidant agent may prevent chronic kidney disease and Parkinson's disease
Researchers from Osaka University developed a novel dietary silicon-based antioxidant agent with renoprotective and neuroprotective effects.

Tools used to study human disease reveal coral disease risk factors
In a study published in Scientific Reports, a team of international researchers led by University of Hawai'i (UH) at Mānoa postdoctoral fellow Jamie Caldwell used a statistical technique typically employed in human epidemiology to determine the ecological risk factors affecting the prevalence of two coral diseases--growth anomalies, abnormalities like coral tumors, and white syndromes, infectious diseases similar to flesh eating bacteria.

Disease-aggravating mutation found in a mouse model of neonatal mitochondrial disease
The new mitochondrial DNA (mtDNA) variant drastically speeds up the disease progression in a mouse model of GRACILE syndrome.

Human longevity largest study of its kind shows early detection of disease & disease risks
Human Longevity, Inc. (HLI) announced the publication of a ground-breaking study in the journal Proceedings of the National Academy of Sciences (PNAS).

30-year study identifies need of disease-modifying therapies for maple syrup urine disease
A new study analyzes 30 years of patient data and details the clinical course of 184 individuals with genetically diverse forms of Maple Syrup Urine Disease (MSUD), which is among the most volatile and dangerous inherited metabolic disorders.

Long-dormant disease becomes most dominant foliar disease in New York onion crops
Until recently, Stemphylium leaf blight has been considered a minor foliar disease as it has not done much damage in New York since the early 1990s.

Read More: Disease News and Disease Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.