Nav: Home

Controlling ultrasound with 3-D printed devices

October 25, 2016

WASHINGTON, D.C., October 25, 2016 -- Ultrasound is more than sound. Obstetricians use it to peer inside a woman's uterus and observe a growing baby. Surgeons use powerful beams of ultrasound to destroy cancer cells. Researchers fire ultrasound into materials to test their properties. But these high-frequency acoustic waves can do even more.

Researchers have now 3-D printed a new kind of device that can harness high-pressure ultrasound to move, manipulate, or destroy tiny objects like particles, drops or biological tissue at scales comparable with cells. By providing unprecedented control of photoacoustic waves -- which are generated by lasers -- such a device can be helpful for performing precise surgery, analyzing the properties of materials, and for scientific research in the lab, such as in the field of microfluidics.

"The advantage of acoustics is that it's noninvasive," said Claus-Dieter Ohl at Nanyang Technological University in Singapore. His team describes their new device this week in Applied Physics Letters, from AIP Publishing. "We have much better control of the photoacoustic wave, and the wave can be even designed such that it serves the purpose of a mechanical actuator."

This control is crucial. Previous devices could only produce basic kinds of acoustic waves: planar waves, which focus to a single point like the way a magnifying glass focuses light waves.

These devices, called laser-generated focused ultrasound transducers, work by converting laser pulses into vibrations. The key part of the transducer is a glass surface that acts like a lens. Laser pulses hit the glass surface, which is coated in a thin film of carbon nanotubes. The heat causes this coating to expand rapidly, which generates the vibrations needed to produce high-frequency and high-pressure acoustic waves.

But because the substrate material is glass, it's limited to planar, cylindrical or spherical shapes. More complicated shapes are difficult and expensive to make out of glass.

The new type of transducer also produces acoustic waves with high-frequency laser pulses. But instead of glass, the researchers used 3-D printers to make a lens out of clear liquid resin. By using a 3-D printer, they could create a lens of any shape, which allows them to generate acoustic waves of any shape. As a result, the researchers can focus the waves at multiple points at the same time or they can control the phase of the waves and focus the waves on different points at various times.

To make their transducer work, the researchers developed a new method to coat the clear resin by painting layers of polymer and carbon nanotubes at room temperature. Conventional methods like vapor deposition require high temperatures that would have melted the cured resin. Their proof-of-concept transducer generates a planar and focused wave at the same time, and it performed as well as a glass one. About two square centimeters in size, it costs only about two dollars to print.

What sets this approach apart is better control combined with simpler and cheaper production. "It allows you to use acoustics for new applications," Ohl said. The precision of the focus -- down to hundreds of microns -- opens up applications in material analysis and surgery. This device could help doctors better attack tumors. In particular, Ohl envisions this device could help eye surgeons conduct cataract surgery . Biomedical researchers can use acoustic waves to measure the elastic properties of cells in a petri dish, seeing how they respond to forces.

By focusing waves at different points and times, the device can exert shear forces and sort, isolate, and manipulate droplets, particles, or biological cells. It would be a powerful tool in microfluidics, for example, which requires strong, precise, and fast control of liquids. To that end, the researchers are now using 3-D-printed photoacoustic transducers to make actuators.
-end-
The article, "Laser-generated focused ultrasound for arbitrary waveforms," is authored by Weiwei Chan, Thomas W. Hies and Claus-Dieter Ohl. The article will appear in the journal Applied Physics Letters on October 25, 2016 (DOI: 10.1063/1.4964852). After that date, it can be accessed at http://scitation.aip.org/content/aip/journal/apl/109/17/10.1063/1.4964852.

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org.

American Institute of Physics

Related Carbon Nanotubes Articles:

Carbon nanotubes self-assemble into tiny transistors
Carbon nanotubes can be used to make very small electronic devices, but they are difficult to handle.
Reusable carbon nanotubes could be the water filter of the future, says RIT study
Enhanced single-walled carbon nanotubes offer a more effective and sustainable approach to water treatment and remediation than the standard industry materials -- silicon gels and activated carbon -- according to a paper by RIT researchers John-David Rocha and Reginald Rogers.
How to roll a nanotube: Demystifying carbon nanotubes' structure control
A key advancement in the design of high performance carbon-based electronics.
Carbon nanotubes improve metal's longevity under radiation
Carbon nanotubes may improve longevity in nuclear reactors.
New process enables easier isolation of carbon nanotubes
Using this new method, long carbon nanotubes with high structural integrity, and without contaminants, can be obtained.
New device uses carbon nanotubes to snag molecules
Engineers at MIT have devised a new technique for trapping hard-to-detect molecules, using forests of carbon nanotubes.
Future electronics based on carbon nanotubes
A big barrier to building useful electronics with carbon nanotubes has always been the fact that when they're arrayed into films, a certain portion of them will act more like metals than semiconductors.
Can engineered carbon nanotubes help to avert our water crisis?
Carbon nanotube membranes have a bright future in addressing the world's growing need to purify water from the sea, researchers say in a study published in the journal Desalination.
Future flexible electronics based on carbon nanotubes
Researchers have demonstrated a new method to improve the reliability and performance of transistors and circuits based on carbon nanotubes, a semiconductor material that has long been considered by scientists as one of the most promising successors to silicon for smaller, faster and cheaper electronic devices.
Synthesis of structurally pure carbon nanotubes using molecular seeds
For the first time, researchers at Empa and the Max Planck Institute for Solid State Research have succeeded in 'growing' single-wall carbon nanotubes with a single predefined structure -- and hence with identical electronic properties.

Related Carbon Nanotubes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...