Nav: Home

After blindness, the adult brain can learn to see again

October 25, 2016

More than 40 million people worldwide are blind, and many of them reach this condition after many years of slow and progressive retinal degeneration. The development of sophisticated prostheses or new light-responsive elements, aiming to replace the disrupted retinal function and to feed restored visual signals to the brain, has provided new hope. However, very little is known about whether the brain of blind people retains residual capacity to process restored or artificial visual inputs. A new study publishing 25 October in the open-access journal PLOS Biology by Elisa Castaldi and Maria Concetta Morrone from the University of Pisa, Italy, and colleagues investigates the brain's capability to process visual information after many years of total blindness, by studying patients affected by Retinitis Pigmentosa, a hereditary illness of the retina that gradually leads to complete blindness.

The perceptual and brain responses of a group of patients were assessed before and after the implantation of a prosthetic implant that senses visual signals and transmits them to the brain by stimulating axons of retinal ganglion cells. Using functional magnetic resonance imaging, the researchers found that patients learned to recognize unusual visual stimuli, such as flashes of light, and that this ability correlated with increased brain activity. However, this change in brain activity, observed at both the thalamic and cortical level, took extensive training over a long period of time to become established: the more the patient practiced, the more their brain responded to visual stimuli, and the better they perceived the visual stimuli using the implant. In other words, the brain needs to learn to see again.

The results are important as they show that after the implantation of a prosthetic device the brain undergoes plastic changes to re-learn how to make use of the new artificial and probably aberrant visual signals. They demonstrate a residual plasticity of the sensory circuitry of the adult brain after many years of deprivation, which can be exploited in the development of new prosthetic implants.
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://dx.doi.org/10.1371/journal.pbio.1002569

Citation: Castaldi E, Cicchini GM, Cinelli L, Biagi L, Rizzo S, Morrone MC (2016) Visual BOLD Response in Late Blind Subjects with Argus II Retinal Prosthesis. PLoS Biol 14(10): e1002569. doi:10.1371/journal.pbio.1002569

Funding: This research was funded by the European Research Council under the European Union's Seventh Framework Programme (FPT/2007-2013) under grant agreement no. 338866 ECPLAIN (http://www.pisavisionlab.org/index.php/projects/ecsplain) and by the Fondazione Roma under the Grants for Biomedical Research: Retinitis Pigmentosa (RP)-Call for proposals 2013 (http://www.fondazioneroma.it/it/index.html, http://wf-fondazioneroma.cbim.it/), project title: "Cortical Plasticity in Retinitis Pigmentosa: an Integrated Study from Animal Models to Humans." MCM received both these grants. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Brain Activity Articles:

More brain activity is not always better when it comes to memory and attention
Potential new ways of understanding the cause of cognitive impairments, such as problems with memory and attention, in brain disorders including schizophrenia and Alzheimer's are under the spotlight in a new research review.
Researchers to predict cognitive dissonance according to brain activity
A new study by HSE researchers has uncovered a new brain mechanism that generates cognitive dissonance -- a mental discomfort experienced by a person who simultaneously holds two or more contradictory beliefs or values, or experiences difficulties in making decisions.
Brain activity can be used to predict reading success up to 2 years in advance
By measuring brainwaves, it is possible to predict what a child's reading level will be years in advance, according to research from Binghamton University, State University of New York.
There's a close association between magnetic systems and certain states of brain activity
Scientists from the University of Granada (UGR) have proven for the first time that there is a close relationship between several emerging phenomena in magnetic systems (greatly studied by condensed matter physicists) and certain states of brain activity.
Hormone can enhance brain activity associated with love and sex
The hormone kisspeptin can enhance activity in brain regions associated with sexual arousal and romantic love, according to new research.
More Brain Activity News and Brain Activity Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.