Nav: Home

New genes on 'deteriorating' Y chromosome

October 25, 2017

Y chromosomes, which are only inherited paternally, evolved from "normal" chromosomes known as autosomes. As males only possess one Y chromosome, there is no counterpart for recombination, the direct exchange of genetic material. This makes the deletion of harmful mutations on the Y chromosome more difficult than in other chromosomes. As a result, genes on the Y chromosome usually undergo a process of degeneration. Earlier studies with fruit flies have shown that new genes can be transferred onto the Y chromosome, although the rate was estimated as very low (1 transfer in 10 million years). Researchers from the Institute of Population Genetics at Vetmeduni Vienna, using a new and highly specific analysis method, could now provide fresh momentum to help decode the evolutionary dynamics of the Y chromosome. Their study shows that ten times more new genes are transferred onto the Y chromosome in fruit flies than had been previously thought. Some of these new genes even appear to have taken on important functions.

New method brings momentum to the previously difficult identification of Y-linked genes

The Y chromosome has been a tough nut to crack in genome research. As it possesses only few functional genes, and these are embedded in repetitive DNA that is difficult to analyse, finding these genes is a challenge. "Only seven functional genes have been identified on the Y chromosome of Drosophila melanogaster. But we suspect that the number of functional genes as well as the actual transfer rate must be higher," says first author Ray Tobler. "We therefore developed a new analysis method that allows us to efficiently search for gene transfers onto the Y chromosome, so-called GeTYs." The researchers' trick consisted in sequencing the genome of males and females from a so-called inbred strain of fruit flies. These differ only in the Y chromosome sequence. "The key to our results was to search for variants in the males that do not exist among the females," says Tobler. "That means we worked without any known Y chromosome sequences that would usually be used for a comparison. This allowed us to trace the transferred genes back to so-called retrocopies, which are created when the RNA transcript of a gene is inserted into the Y chromosome."

Transferred RNA copies and important selection mechanisms identified for the first time

All previously described gene transfers onto the Y chromosome involved the transfer of a piece of the chromosome and not an RNA transcript. "The high number of validated gene transfers allowed us to statistically show that there were differences between Drosophila species," explains senior author Christian Schlötterer. "We only found genes originating from an RNA transcript in the closely related D. mauritiana and D. simulans, which suggests that the transfer mechanisms are species-specific."

New impetus for Y chromosome research in other species

A special surprise for the research team was that four of the 25 newly transferred genes on the Y chromosome have already assumed an important function there. "As these new genes can be found in all individuals of a species, the question arises as to which functions these new Y-linked genes could have," says Tobler. Until now, it has been still completely unclear if and how long these new genes can withstand the deterioration of the Y chromosome. As the new analysis method does not require a reference genome for the Y chromosome, it offers enormous potential to study the dynamics of new genes on the Y chromosome in many different species. "I expect many more exciting findings," concludes Christian Schlötterer.
-end-
Service:

The article "High rate of translocation-based gene birth on the Drosophila Y chromosom" by Ray Tobler, Viola Nolte and Christian Schlötterer was published in PNAS. http://www.pnas.org/content/early/2017/10/18/1706502114.full

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. The Vetmeduni Vienna plays in the global top league: in 2017, it occupies the excellent place 8 in the world-wide Shanghai University veterinary in the subject "Veterinary Science". http://www.vetmeduni.ac.at

Scientific Contact:

Christian Schlötterer
Institute of Population Genetics
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T 43-1-25077-4300
christian.schloetterer@vetmeduni.ac.at

University of Veterinary Medicine -- Vienna

Related Genome Articles:

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.
A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.
Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
Why do we need one pair of genome?
Scientists have unraveled how the cell replication process destabilizes when it has more, or less, than a pair of chromosome sets, each of which is called a genome -- a major step toward understanding chromosome instability in cancer cells.
A new genome for regeneration research
The first complete genome assembly of planarian flatworm reveals a treasure trove on the function and evolution of genes.
More Genome News and Genome Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.