New software lets your car tell you what it needs

October 25, 2017

CAMBRIDGE, Mass -- Imagine hopping into a ride-share car, glancing at your smartphone, and telling the driver that the car's left front tire needs air, its air filter should be replaced next week, and its engine needs two new spark plugs.

Within the next year or two, people may be able to get that kind of diagnostic information in just a few minutes, in their own cars or any car they happen to be in. They wouldn't need to know anything about the car's history or to connect to it in any way; the information would be derived from analyzing the car's sounds and vibrations, as measured by the phone's microphone and accelerometers.

The MIT research behind this idea has been reported in a series of papers, most recently in the November issue of the journal Engineering Applications of Artificial Intelligence. The new paper's co-authors include research scientist Joshua Siegel PhD '16; Sanjay Sarma, the Fred Fort Flowers and Daniel Fort Flowers Professor of Mechanical Engineering and vice president of open learning at MIT; and two others.

A smartphone app combining the various diagnostic systems the team developed could save the average driver $125 a year and improve their overall gas mileage by a few percentage points, Siegel says. For trucks, the savings could run to $600 a year, not counting the benefits of avoiding breakdowns that could result in lost income.

With today's smartphones, Siegel explains, "the sensitivity is so high, you can do a good job [of detecting the relevant signals] without needing any special connection." For some diagnostics, though, mounting the phone to a dashboard holder would improve the level of accuracy. Already, the accuracy of the results from the diagnostic systems they have developed, he says, are "all well in excess of 90 percent." And tests for misfire detection have produced no false positives where a problem was incorrectly identified.

The basic idea is to provide diagnostic information that can warn the driver of upcoming issues or needed routine maintenance, before these conditions lead to breakdowns or blowouts.

Take the air filter, for example -- the topic of the team's latest findings. An engine's sounds can reveal telltale signs of how clogged the air filter is and when to change it. And unlike many routine maintenance tasks, it's just as bad to change air filters too soon as to wait too long, Siegel says.

That's because brand-new air filters let more particles pass through, until they eventually build up enough of a coating of particles that the pore sizes get smaller and reach an optimal level of filtration. "As they age, they filter better," he says. Then, as the buildup continues, eventually the pores get so small that they restrict the airflow to the engine, reducing its performance. Knowing just the right time to replace the filter can make a measurable difference in an engine's performance and operating costs.

How can the phone tell the filter is getting clogged? "We're listening to the car's breathing, and listening for when it starts to snore," Siegel says. "As it starts to get clogged, it makes a whistling noise as air is drawn in. Listening to it, you can't differentiate it from the other engine noise, but your phone can."

To develop and test the various diagnostic systems, which also include detecting engine misfires that signal a bad spark plug or the need for a tune up, Siegel and his colleagues tested data from a variety of cars, including some that ran perfectly and others in which one of these issues, from a clogged filter to a misfire, was deliberately induced. Often, in order to test different models, the researchers rented cars, created a condition they wanted to be able to diagnose, and then restored the car to normal.

"For our data, we've induced failures [after renting] a perfectly good vehicle" and then fixed it and "returned the car better than when we took it out. I've rented cars and given them new air filters, balanced their tires, and done an oil change" before taking them back, he recalls.

Some of the diagnostics require a complicated multistep process. For example, to tell if a car's tires are getting bald and will need to be replaced soon, or that they are overinflated and might risk a blowout, the researchers use a combination of data collection and analysis. First, the system uses the phone's built-in GPS system to monitor the car's actual speed. Then, vibration data can be used to determine how fast the wheels are turning. That in turn can used to derive the wheel's diameter, which can be compared with the diameter that would be expected if the tire were new and properly inflated.

Many of the diagnostics are derived by using machine-learning processes to compare many recordings of sound and vibration from well-tuned cars with similar ones that have a specific problem. The machine learning systems can then extract even very subtle differences. For example, algorithms designed to detect wheel balance problems did a better job at detecting imbalances than expert drivers from a major car company, Siegel says.

A prototype smartphone app that incorporates all these diagnostic tools is being developed and should be ready for field testing in about six months, Siegel says, and a commercial version should be available within about a year after that. The system will be commercialized by a startup company Siegel founded called Data Driven.
-end-
ADDITIONAL BACKGROUND:

ARCHIVE: Cars, data and internet of things https://slice.mit.edu/2016/10/20/cars-data-and-internet-of-things/

Massachusetts Institute of Technology

Related Smartphone Articles from Brightsurf:

Mobile smartphone technology is associated with better clinical outcomes for OHCA
Mobile smartphone technology can accelerate first responder dispatch and may be instrumental to improving out?of?hospital cardiac arrest (OCHA) survival.

New tool can diagnose strokes with a smartphone
A new tool created by researchers at Penn State and Houston Methodist Hospital could diagnose a stroke based on abnormalities in a patient's speech ability and facial muscular movements, and with the accuracy of an emergency room physician -- all within minutes from an interaction with a smartphone.

App analyzes coronavirus genome on a smartphone
A team led by Garvan's Dr Ira Deveson developed the app 'Genopo' that can analyse the coronavirus genome on a portable Android device.

Smartphone accelerometers could help in resistance workouts and rehabilitation protocols
Smartphone accelerometers are effective tools to measure key time-under-tension indicators of muscle training -- and could help in resistance-based workouts and rehabilitation protocols.

Parents' smartphone use does not harm parent/child relationships
Contrary to popular views, parental smartphone use is rarely associated with poor parenting, and more often than not, tends to be associated with warm and attached parenting.

The effects of smartphone use on parenting
Parents may worry that spending time on their smartphones has a negative impact on their relationships with their children.

Inexpensive retinal diagnostics via smartphone
Retinal damage due to diabetes is now considered the most common cause of blindness in working-age adults.

Nanosensor can alert a smartphone when plants are stressed
MIT engineers can closely track how plants respond to stresses such as injury, infection, and light damage using sensors made of carbon nanotubes.

Smartphone apps not accurate enough to spot all skin cancers
Smartphone apps that assess the risk of suspicious moles cannot be relied upon to detect all cases of skin cancer, finds a review of the evidence published by The BMJ today.

Detecting mental and physical stress via smartphone
The team led by Professor Enrico Caiani of the Department of Electronics, Information and Bioengineering at Politecnico di Milano, Italy, has shown that it is possible to use our smartphones without any other peripherals or wearables to accurately extract vital parameters, such as heart beat rate and stress level.

Read More: Smartphone News and Smartphone Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.