Nav: Home

Discovery of new superconducting materials using materials informatics

October 25, 2018

A NIMS-Ehime University joint research team succeeded in discovering new materials that exhibit superconductivity under high pressures using materials informatics (MI) approaches (data science-based material search techniques). This study experimentally demonstrated that MI enables efficient exploration of new superconducting materials. MI approaches may be applicable to the development of various functional materials, including superconductors.

Superconducting materials which enable long-distance electricity transmission without energy loss in the absence of electrical resistance?are considered to be a key technology in solving environmental and energy issues. The conventional approach by researchers searching for new superconducting materials or other materials has been to rely on published information on material properties, such as crystalline structures and valence numbers, and their own experience and intuition. However, this approach is time-consuming, costly and very difficult because it requires extensive and exhaustive synthesis of related materials. As such, demand has been high for the development of new methods enabling more efficient exploration of new materials with desirable properties.

This joint research team took advantage of the AtomWork database, which contains more than 100,000 pieces of data on inorganic crystal structures. The team first selected approximately 1,500 candidate material groups whose electronic states could be determined through calculation. The team then narrowed this list to 27 materials with desirable superconducting properties by actually performing electronic state calculations. From these 27, two materials?SnBi2Se4 and PbBi2Te4?were ultimately chosen because they were relatively easy to synthesize.

The team synthesized these two materials and confirmed that they exhibit superconductivity under high pressures using an electrical resistivity measuring device. The team also found that the superconducting transition temperatures of these materials increase with increasing pressure. This data science-based approach, which is completely different from the conventional approaches, enabled identification and efficient and precise development of superconducting materials.

Experiments revealed that these newly discovered materials may have superb thermoelectric properties in addition to superconductivity. The method we developed may be applicable to the development of various functional materials, including superconductors. In future studies, we hope to discover innovative functional materials, such as room-temperature superconducting materials, by including a wider range of materials in our studies and increasing the accuracy of the parameters relevant to desirable properties.
-end-
This project was carried out by a research team led by Yoshihiko Takano (Group Leader, MANA, NIMS), Ryo Matsumoto (JSPS Researcher, MANA, NIMS), Zhufeng Hou (Special Researcher, MaDIS, NIMS), Kiyoyuki Terakura (Executive Advisor, MaDIS, NIMS) and Tetsuo Irifune (Director of the Geodynamics Research Center, Ehime University). Part of this project was conducted in conjunction with another project entitled "Development of electrical conductivity measuring devices and the search for new superconductors under extreme pressure" funded by JSPS Grants-in-Aid for Scientific Research (Grant No. JP17J05926). In addition, this project was funded by the JST CREST program entitled "Scientific innovation for energy harvesting technology" (Grant No. JPMJCR16Q6) and the Premier Research Institute for Ultrahigh-pressure Sciences (PRIUS), Ehime University.

This research is scheduled to be published in the September 2018 issue of Applied Physics Express, an international journal of the Japan Society of Applied Physics. It has already been published in the online version of this journal as a "Spotlight" article.

Contacts

(Regarding this research)

Yoshihiko Takano
Group Leader,
Nano Frontier Superconducting Materials Group,
International Center for Materials Nanoarchitectonics(MANA),
National Institute for Materials Science
TEL: +81-29-859-2842
E-Mail: takano.yoshihiko@nims.go.jp

Tetsuo Irifune
Director of the Geodynamics Research Center, Ehime University
TEL: +81-89-927-9645
E-Mail: irifune@dpc.ehime-u.ac.jp

(For general inquiries)

Public Relations Office
National Institute for Materials Sciences
Tel: +81-29-859-2026
Fax: +81-29-859-2017
E-Mail: pressrelease@ml.nims.go.jp

National Institute for Materials Science, Japan

Related Superconductivity Articles:

Looking at light to explore superconductivity in boron-diamond films
More than a decade ago, researchers discovered that when they added boron to the carbon structure of diamond, the combination was superconductive.
Discovery in new material raises questions about theoretical models of superconductivity
The US Department of Energy's Ames Laboratory has successfully created the first pure, single-crystal sample of a new iron arsenide superconductor, CaKFe4As4, and studies of this material have called into question some long-standing theoretical models of superconductivity.
Superconductivity with two-fold symmetry -- new evidence for topological superconductor SrxBi2Se3
Topological superconductivity is the quantum condensate of paired electrons with an odd parity of the pairing function.
Portable superconductivity systems for small motors
Superconductivity is one of modern physics' most intriguing scientific discoveries.
Graphene's sleeping superconductivity awakens
The intrinsic ability of graphene to superconduct (or carry an electrical current with no resistance) has been activated for the first time.
More Superconductivity News and Superconductivity Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...