Discovery of new superconducting materials using materials informatics

October 25, 2018

A NIMS-Ehime University joint research team succeeded in discovering new materials that exhibit superconductivity under high pressures using materials informatics (MI) approaches (data science-based material search techniques). This study experimentally demonstrated that MI enables efficient exploration of new superconducting materials. MI approaches may be applicable to the development of various functional materials, including superconductors.

Superconducting materials which enable long-distance electricity transmission without energy loss in the absence of electrical resistance?are considered to be a key technology in solving environmental and energy issues. The conventional approach by researchers searching for new superconducting materials or other materials has been to rely on published information on material properties, such as crystalline structures and valence numbers, and their own experience and intuition. However, this approach is time-consuming, costly and very difficult because it requires extensive and exhaustive synthesis of related materials. As such, demand has been high for the development of new methods enabling more efficient exploration of new materials with desirable properties.

This joint research team took advantage of the AtomWork database, which contains more than 100,000 pieces of data on inorganic crystal structures. The team first selected approximately 1,500 candidate material groups whose electronic states could be determined through calculation. The team then narrowed this list to 27 materials with desirable superconducting properties by actually performing electronic state calculations. From these 27, two materials?SnBi2Se4 and PbBi2Te4?were ultimately chosen because they were relatively easy to synthesize.

The team synthesized these two materials and confirmed that they exhibit superconductivity under high pressures using an electrical resistivity measuring device. The team also found that the superconducting transition temperatures of these materials increase with increasing pressure. This data science-based approach, which is completely different from the conventional approaches, enabled identification and efficient and precise development of superconducting materials.

Experiments revealed that these newly discovered materials may have superb thermoelectric properties in addition to superconductivity. The method we developed may be applicable to the development of various functional materials, including superconductors. In future studies, we hope to discover innovative functional materials, such as room-temperature superconducting materials, by including a wider range of materials in our studies and increasing the accuracy of the parameters relevant to desirable properties.
-end-
This project was carried out by a research team led by Yoshihiko Takano (Group Leader, MANA, NIMS), Ryo Matsumoto (JSPS Researcher, MANA, NIMS), Zhufeng Hou (Special Researcher, MaDIS, NIMS), Kiyoyuki Terakura (Executive Advisor, MaDIS, NIMS) and Tetsuo Irifune (Director of the Geodynamics Research Center, Ehime University). Part of this project was conducted in conjunction with another project entitled "Development of electrical conductivity measuring devices and the search for new superconductors under extreme pressure" funded by JSPS Grants-in-Aid for Scientific Research (Grant No. JP17J05926). In addition, this project was funded by the JST CREST program entitled "Scientific innovation for energy harvesting technology" (Grant No. JPMJCR16Q6) and the Premier Research Institute for Ultrahigh-pressure Sciences (PRIUS), Ehime University.

This research is scheduled to be published in the September 2018 issue of Applied Physics Express, an international journal of the Japan Society of Applied Physics. It has already been published in the online version of this journal as a "Spotlight" article.

Contacts

(Regarding this research)

Yoshihiko Takano
Group Leader,
Nano Frontier Superconducting Materials Group,
International Center for Materials Nanoarchitectonics(MANA),
National Institute for Materials Science
TEL: +81-29-859-2842
E-Mail: takano.yoshihiko@nims.go.jp

Tetsuo Irifune
Director of the Geodynamics Research Center, Ehime University
TEL: +81-89-927-9645
E-Mail: irifune@dpc.ehime-u.ac.jp

(For general inquiries)

Public Relations Office
National Institute for Materials Sciences
Tel: +81-29-859-2026
Fax: +81-29-859-2017
E-Mail: pressrelease@ml.nims.go.jp

National Institute for Materials Science, Japan

Related Superconductivity Articles from Brightsurf:

New kind of superconductivity discovered
Superconductivity is a phenomenon where an electric circuit loses its resistance and becomes extremely efficient under certain conditions.

Room temperature superconductivity creeping toward possibility
The possibility of achieving room temperature superconductivity took a tiny step forward with a recent discovery by a team of Penn State physicists and materials scientists.

A 'breath of nothing' provides a new perspective on superconductivity
Zero electrical resistance at room temperature? A material with this property, i.e. a room temperature superconductor, could revolutionize power distribution.

New Princeton study takes superconductivity to the edge
The existence of superconducting currents, or supercurrents, along the exterior of a superconductor, has been surprisingly hard to find.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

How a magnet could help boost understanding of superconductivity
Physicists have unraveled a mystery behind the strange behavior of electrons in a ferromagnet, a finding that could eventually help develop high temperature superconductivity.

New study explains why superconductivity takes place in graphene
Theoretical physicists take important step in development of high temperature superconductors.

Better studying superconductivity in single-layer graphene
A new study published in EPJ B demonstrates that an existing technique is better suited for probing superconductivity in pure, single-layer graphene than previously thought.

Stressing metallic material controls superconductivity
No strain, no gain -- that's the credo for Cornell researchers who have helped find a way to control superconductivity in a metallic material by stressing and deforming it.

First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.

Read More: Superconductivity News and Superconductivity Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.