Bacteria: Protein researchers decipher resistance mechanism

October 25, 2018

Worldwide, resistance to antibiotics is on the rise. In order to understand why bacteria are becoming immune to previously well-functioning drugs, scientists are penetrating ever deeper into the molecular structure of cells. A research group at Martin Luther University Halle-Wittenberg (MLU) has now succeeded in isolating a membrane protein from the E. coli bacterium and shed light on its molecular structure. Armed with this information, they have been able to show how the bacterium manages to rid itself of the antibiotic by forcing out the drug. The paper has been published in the renowned journal "Nature Communications".

Antibiotic resistance of bacteria is one of the most important medical issues of our time. Left unchecked, previously well-treatable bacterial diseases are at risk of taking such severe turns that patients might die. "This is a real threat," says Professor Milton T. Stubbs, Director of the Centre for Innovation Competence (ZIK) "HALOmem" where the work was conducted. According to Stubbs, who has been researching the biosynthesis of antibiotics for many years, the danger this poses means it is crucial to understand the mechanisms of antibiotic resistance.

The current study is the result of work by a junior research group at ZIK HALOmem, led at the time by Dr Mikio Tanabe. Tanabe is now an Associate Professor at the KEK Research Facility in Tsukuba, Japan. The group succeeded in isolating a membrane protein called MdfA from E. coli bacteria and were able to determine its molecular structure. The protein first had to be produced in the laboratory, isolated in its pure form and crystallised. "Dealing with sensitive membrane proteins is a very complicated process. Optimal conditions must be maintained in the laboratory so that the protein remains stable and keeps its native structure," explains Stubbs.

X-ray crystallography made it possible to visualise the structure of the material produced. Using this precise physical process, researchers are able to penetrate the Ångström range - one Ångström corresponds to one tenth of a nanometre, i.e. one ten billionth (10-10) of a metre, allowing researchers to work at a level at which individual atoms become visible. The ability to locate individual atoms in a molecule at this resolution holds the key to understanding how the protein works.

The process has revealed the three-dimensional structure of the membrane protein MdfA in the E. coli bacterium. The researchers from Halle utilised the results of a study that a rival group in China had recently published on the same protein and thereby succeeded in determining the mechanism that the membrane protein MdfA uses to help the bacterium become resistant.

The principle is reminiscent of a kind of pump mechanism. Although the drug is initially absorbed by the bacteria, it is ejected from the cell by MdfA before it becomes lethal to the bacteria.

"We assume that the mechanism discovered in this research applies to many other antibiotics," explains Milton Stubbs. This information will also provide the basis for later practical applications. "It is not until we understand the mechanisms of how resistances develop that we can look for solutions to prevent them."
-end-
The research paper has been published in the renowned journal "Nature Communications". It is also one of the first research papers to be published under the umbrella of the new Charles Tanford Protein Centre at MLU. "Such success, of course, is a testament to our research location," says Milton Stubbs.

Martin-Luther-Universität Halle-Wittenberg

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.