Nav: Home

Borexino experiment: analysis of ten years of neutrino signals

October 25, 2018

Researchers from the Borexino collaboration have published the hitherto most comprehensive analysis of neutrinos from the Sun's core processes. The results confirm previous assumptions about the processes inside the sun.

According to the standard solar model, around 99 percent of the Sun's energy stems from a sequence of fusion processes in which hydrogen is converted to helium. It begins with the fusion of two protons into a heavy hydrogen nucleus, a process aptly called the pp chain. In some of these processes, neutrinos of characteristic energies are also released, allowing the progression of the pp chain to be reconstructed very accurately.

First overall assessment of the Sun's neutrino spectrum

Buried deep in the mountains of the Italian Gran Sasso massif, the Borexino experiment, which focusses on detecting these solar neutrinos, has been running since 2007.

The Borexino scientists are now presenting, for the first time, a comprehensive investigation of the fusion processes in the pp chain via neutrinos. They determined the interaction rates of the individual processes with unprecedented precision.

The results substantiate the solar model

"All in all, the results confirm our theoretical perceptions of what goes on inside the Sun," says Prof. Stefan Schönert, Professor of Experimental Astroparticle Physics and Co-Spokesperson of the Collaborative Research Center 1258 at the Technical University of Munich and member of the new ORIGINS Cluster.

The Borexino scientists also calculated the Sun's energy production rate and compared this to the well-known estimate based on the Sun's electromagnetic radiation. The two values are in good agreement. This shows that solar activity has been constant for at least one hundred thousand years, which is how long it takes sunlight to leave the energy production zone inside the Sun. Neutrinos, in contrast reach the Earth in only 8 minutes.

What is the chemical composition of the Sun?

The Borexino results also provide an interesting clue to a previously unresolved solar mystery: What is the concentration of nuclei heavier than hydrogen and helium, the so-called metallicity? The higher the concentration of heavy nuclei, the more light is absorbed. This influences the temperature, size, brightness and life of the Sun.

To date, the Sun was assumed to have low metallicity. "Our results now indicate a solar temperature profile that suggests high metallicity," summarizes Prof. Lothar Oberauer of TUM and one of the founding members of the Borexino experiment.
-end-
Publication:

Comprehensive measurement of pp-chain solar neutrinos
M. Agostini, K. Altenmüller, S. Appel et. al.
Nature volume 562, pages 505-510 (2018),

DOI: 10.1038/s41586-018-0624-y

More information:

The Borexino experiment is operated and funded by an international consortium. In addition to the Technical University of Munich, the Institute of Nuclear Physics at Forschungszentrum Jülich, the Institute for Experimental Physics at the University of Hamburg, RWTH Aachen University, Johannes Gutenberg University Mainz and the Faculty of Physics of the Technical University of Dresden are involved in Germany.

The Borexino program is funded by the INFN (Italy), the NSF (USA), the German Federal Ministry of Research, the German Research Foundation, the Helmholtz Association of German Research Centers and the Max Planck Society (Germany), the RFBR, the RSF (Russia) and NCN (Poland).

Contact:

Chair of Experimental Astroparticle Physics
Technical University of Munich

Prof. Stefan Schönert
E-Mail: schoenert@ph.tum.de
Tel.: +49 89 289-12511/12522

Prof. Lothar Oberauer
E-Mail: oberauer@ph.tum.de Tel.: +49 89 289-12509/12522

Technical University of Munich (TUM)

Related Hydrogen Articles:

Paving the way for hydrogen fuel cells
The hype around hydrogen fuel cells has died down, but scientists have continued to pursue new technologies that could enable such devices to gain a firmer foothold.
Keeping the hydrogen coming
A coating of molybdenum improves the efficiency of catalysts for producing hydrogen.
Hydrogen bonds directly detected for the first time
For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope.
Argon is not the 'dope' for metallic hydrogen
Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter.
Metallic hydrogen, once theory, becomes reality
Nearly a century after it was theorized, Harvard scientists have succeeded in creating metallic hydrogen.
From theory to reality: The creation of metallic hydrogen
For more than 80 years, it has been predicted that hydrogen will adopt metallic properties under certain conditions, and now researchers have successfully demonstrated this phenomenon.
Artificial leaf goes more efficient for hydrogen generation
A new study, affiliated with Ulsan National Institute of Science and Technology has introduced a new artificial leaf that generates hydrogen, using the power of the Sun to mimic underwater photosynthesis.
Hydrogen from sunlight -- but as a dark reaction
The storage of photogenerated electric energy and its release on demand are still among the main obstacles in artificial photosynthesis.
New process produces hydrogen at much lower temperature
Waseda University researchers have developed a new method for producing hydrogen, which is fast, irreversible, and takes place at much lower temperature using less energy.
Hydrogen in your pocket? New plastic for carrying and storing hydrogen
A Waseda University research group has developed a polymer which can store hydrogen in a light, compact and flexible sheet, and is safe to touch even when filled with hydrogen gas.

Related Hydrogen Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".